CHAPTER 2
Surface-consistent deconvolution

2.1 OVERVIEW

Multi-trace deconvolution, and surface-consistent deconvolution in particular, has
three major uses:

1. Noise reduction The reliability of filter estimates is increased by using more statis-
tics. By using the redundancy of multichannel seismic data in deconvolution, we com-
bat noise much as we do in stacking. The surface-consistent model tells us where to
find the additional statistics. It also tells us what effects we have to unravel to get at
these statistics.

2. Statics estimation A key assumption behind statics picking is that the cross-

correlation of two reflection events is maximized when the events are aligned. Unless
the events have similar wavelets attached to them, this will not be the case. Deconvo-
lution usually acts to balance the spectra of seismic traces, improving the similarity of
these wavelets. A drawback of deconvolution is that it will usually shift the location of
the wavelet at the same time. This can be a problem for surface-consistent statics
decomposition, which assumes the trace-to-trace shifts fit a surface-consistent model.
By using surface-consistent deconvolution, we obtain spectral balancing without
sacrificing the fit of our statics to a surface-consistent model.

3. Amplitude extraction Traéking amplitude as a function of shot-to-receiver offset is

useful for weeding out strong reflections that are not due to trapped hydrocarbons.
Surface-consistent amplitude balancing is used to compensate for amplitude effects that
aren’t due to changes in reflection coefficients with angle of incidence. This is best
done after spectral balancing, i.e. deconvolution. The pitfall is that deconvolution
changes the energy of seismic traces. Reductions by 90% are not uncommon for spik-
ing deconvolution. Usually, this is compensated by rescaling each trace after deconvo-
lution to match its energy before deconvolution. Such rebalancing can easily destroy
relative amplitudes, however. A solution is to balance spectra with surface-consistent

deconvolution in order to keep amplitudes corrections surface-consistent.

In this chapter, I develop a good method for surface-consistent deconvolution that
avoids transformation to the log-spectral domain. In my approach, I design deconvolu-
tion filters directly in the time-space domain.

I avoid the log-frequency domain for several reasons. The log transformation dis-
torts the statistics of additive noise. The heaviest weighting occurs where the signal
spectrum approaches zero; these gaps should have the least influence on filter esti-
mates. These spectral gaps also degrade phase unwrapping, a critical component when
phase is not assumed a priori, such as in homomorphic deconvolution. Additionally,
smoothing or other constraints must be imposed on the frequency spectrum in order to
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control the temporal duration of the estimated filters. The problem cannot simply be
solved one frequency at a time; the original appeal of the log-frequency transform is
then lost.

A more fundamental problem with the log-frequency transform is that it simplifies
only the purely one-dimensional convolutional model. Two-dimensional effects such as
array response or wave propagation cannot be incorporated cleanly into such process-
ing; nor can nonconvolutional effects such as attenuation and, as noted earlier, additive

noise.

For these reasons I choose to work directly in the time-space domain in designing
inverse filters for surface-consistent deconvolution. I find that the straightforward
method of repeated gather-by-gather deconvolution runs into both technical and philo-
sophical problems. I employ methods for solving large, sparse least-squares systems to
sort out the difficulties and develop a stable and reasonably efficient surface-consistent
analogue of conventional prediction-error filtering. Here, not surprisingly, the chief
operations are convolution and correlation. Applying it to field data from the San
Joaquin Valley, I obtain results about the same as conventional single-trace deconvolu-
tion. This is independent evidence that the surface-consistent model is an apt approxi-
mation for this seismic data. I also apply surface-consistent deconvolution to the
suppression of marine multiples on a Barents Sea profile recorded over a hard water-
bottom. 1 find, for reasons which I will explain, that the surface-consistent model does
not fit these data, contrary to theoretical arguments that have appeared in the litera-
ture.

2.2 REPETITION TESTS

Surface-consistent statics solutions are computed iteratively by repeated spatial
averaging over common-source, common-receiver, and common-midpoint gathers until
convergence is reached. The result satisfies a repetition test: no better answer is
obtained by further iteration. For a process to satisfy such a test is both useful and
reassuring. If a good result can be obtained, it is obtained; a poor result will not be
improved by further iteration. Ideally, we would like our processing to satisfy an even
stronger test: no better answer is obtained by reprocessing with a new choice of param-
eters. In practice, this is unobtainable; the best we can do is to reduce the number of
parameters the user needs to select. This is the appeal of estimating residual statics by
stack power optimization (Ronen and Claerbout, 1985): a separate time-shift picking
step requiring half a dozen user-specified tolerances and thresholds is avoided.

Ideally, deconvolution should also satisfy a repetition test. Claerbout (1984)
argues this is especially important for nonlinear, iterative deconvolution schemes. He
proposes a stringent repetition test:

“Take the output of a deconvolution process and use it for the input of a
second iteration of the same deconvolution process. The second output
should be the same as the first output.”



This is too strong a requirement. It would force us to abandon even single-trace
predictive deconvolution. What predictive deconvolution does satisfy is an optimiza-
tion test: the inverse filters it produces really do minimize the prediction error as
measured by the same least-squares criterion from which the method is derived. This
is a sensible requirement to impose on surface-consistent prediction-error filtering, one
that I will show how to attain at reasonable cost.

Prediction-error filtering is not the only deconvolution method that is based on
optimization. The maximum-entropy method (Burg, 1975) minimizes the sum of for-
ward and backward prediction error for its reflection coefficient estimates. The
minimum-entropy (Wiggins, 1978) and variable-norm (Gray, 1979) deconvolutions
minimize some measure of spikiness of the output. While I do not study these here,
one should require their surface-consistent extensions to satisfy the optimization test
too.

Iterative deconvolution

For deconvolution, an analogue of the surface-consistent statics solution used in
practice (e.g. Newman, 1986) is to perform one or more passes over the data deconvolv-
ing individual gathers and switching gather types, e.g. common-shot to common-
receiver, between iterations. Usually, the iterations are kept to one or two to both
limit the cascaded filter length and save computer time. To satisfy Claerbout’s repeti-
tion test we should iterate until convergence. Here I show by example that neither of
these methods can be relied upon in practice to give a good deconvolution.

In Figures 2.1 through 2.3, I show the results of repeated iteration on a seismic
line from the Central Valley of California. For these tests I adapted a single trace
Wiener-Levinson predictive deconvolution program to process each gather by averaging
the autocorrelations of the individual traces, normalized to have zero lag 1, and design-
ing an inverse filter for the average. This filter is convolved with each trace of the
gather to produce the deconvolved output. In the early iterations, a stack of the gath-
ers after one pass over shots and receivers (Figure 2.2) looks very similar to the stack
of the input (Figure 2.1). Further iteration produces a noiser, less appealing stacked
image and after a few more passes over the survey (Figures 2.3) the stack becomes sim-
ply awful. None of the results comes anywhere near the quality of the output of
single-trace predictive deconvolution (Figure 2.4.) This is not a failure of the surface-
consistent model. In the next section I will produce a surface-consistent deconvolution
of these data that is comparable to single-trace deconvolution. The fault lies in assum-
ing simple (unweighted) averaging is sufficient to cancel out the “gather-inconsistent”
effects in the individual traces.

In summary, I’ve shown that a good surface-consistent deconvolution cannot be
expected if only gather-by-gather deconvolutions are cascaded. If we anticipate that

the convolutional effects on our data are mostly due to surface-consistent effects, we
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FIG. 2.1. Stack of undeconvolved input to surface-consistent deconvolution. There are
275 28-fold common midpoint (CMP) gathers in this dataset. Trace length is 5 seconds
sampled at 4 msec. These data are from the Central Valley of California. The sag in
the center of the section is due to a low-velocity near-surface anomaly.
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FIG. 2.2. Stack after one iteration through common-shot gathers and common-
geophone gathers. This is one industry method for surface-consistent deconvolution.
In this example, the shallow reflectors have been broken up and there has been only a
small amount of wavelet compression on the deeper horizons.
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gather-by-gather deconvolu-
le remains on the stack.
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should demand that surface-consistent deconvolution produce results at least compar-
able to single-trace (surface-inconsistent) deconvolution. In the next section I pose the
problem of designing surface-consistent deconvolution filters as an optimization prob-
lem. Applying methods for solving large, least-squares systems, I obtain a proper
gather-by-gather iteration that produces the required deconvolution filters simultane-
ously.

2.3 LINEARIZATIONS FOR SIMULTANEOUS FILTER DESIGN

The previous section argues for simultaneous rather than cascaded surface-
consistent design of deconvolution filters. A similar conclusion is reached by Claerbout
(1986) for the problem of deconvolving the source signature before normal moveout
correction without interfering with multiple reverberations, which should be handled
after divergence correction and normal moveout. His solution is to design debubble
and dereverberation filters simultaneously by linearizing the combined process about
some starting guess and using least-squares to estimate perturbations that reduce pred-
iction error. I too will apply nonlinear least-squares methods to design surface-
consistent filters simultaneously; however, I will not incorporate moveout corrections
into the process. While it is not difficult to do so, this is not a promising avenue.
First, in land acquisition the near-surface is weathered and has a very low acoustic ve-
locity. Reverberations are often generated within this zone, say between the surface
and the water table, which have raypaths that are nearly vertical and have a periodi-
city nearly independent of the angle of deflection of the rays below the weathered zone.
Second, there is the velocity dilemma - overlapping of primary events and reverbera-
tion trains supplies us with conflicting choices for moveout velocity. Indeed this is a
motivation for Claerbout’s later work (1986) that advocates replacing normal-moveout
correction with wave extrapolation.

Following Dennis (1977), let me briefly review some classic techniques for non-
linear least-squares to minimize a sum of squares of the form

2 | ie (2.1)
for a vector function f . Equating its derivative to zero produces
JTy =0 (2.2)

where J is the matrix of partial derivatives of f . The second derivative of the sum of
squares may be written

JTJ + K (2.3)

where
K =% /v . (24)

When [ is a linear function, y2f is identically zero. Thus K is a measure of the
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departure from linearity. The Newton equations

(JTJ +K)éx = -JTf (2.5)
determine the location of a zero of the quadratic approximation to the sum of squares
obtained by truncating a Taylor expansion at second order.

In the Gauss-Newton method one assumes that K is small compared to J7 J,
lLe., that f is locally linear, and looks instead at the equations

JTJ6x = -JT g (2.6)
which are the normal equations for the classic linear least-squares problem
J b = -f . (2.7)

A myriad of numerical methods exist for handling equations (2.6) or (2.7). In this

thesis, I used two canned conjugate-gradient subroutines from Paige and Saunders
(1975, 1982) - SYMMLQ for which deals with JT J in the normal equations (2.6) and
LSQR which works directly with J in the least-squares system (2.7).

Deconvolution methods based upon the principle of minimum prediction-error fall
into this least-squares framework. The following three examples make this concrete
and lead naturally into surface-consistent prediction-error filtering, the goal of this
chapter.

Single-channel deconvolution

Here the vector fis given by
f = d -SH(d)b (2.8)

where d is the data trace, b is the unknown prediction filter, and SH(d ) is a matrix of
shifted copies of d:

(0 0 O )
d, 0 O
d, d, 0
dy dy d,
dy dy
dy
o .
0 0
0 0 o0 .|

This matrix representation emphasizes that the data traces are the known quantities
and the filter is unknown. In other applications the filter can be the known quantity

and the time series the unknown. Then it is more useful to represent convolution as
SH(b )d .

13



The gradient equation (2.2) may be written
0 = -SH(d)T (d - SH(d)b ) (2.9)
which are the normal equations for the least squares problem
d =~ SH(d)b . (2.10)
The second derivative Hessian matrix is
SH(d)T SH(d) (2.11)

which is JT J; K is zero because this is a linear problem. From (2.11) we see the
Newton step (2.5) satisfies

SH(d )T SH(d)6b = SH(d)T (d -SH(d)b) (2.12)
again normal equations for
SH(d )éb ~ d - SH(d)b , (2.13)

which, for a starting guess of b =0, is identical to (2.10), since the problem was linear.
For the same reason the Gauss-Newton equations are identical to the Newton equa-
tions.

Multichannel deconvolution

By this I mean designing a single filter for a gather of traces. Concatenate the
data traces d; and the convolutional matrices SH(d; ) and the single channel derivation
above now applies. The matrix J partitions into blocks with one block for each data
trace. This structuring arises because each trace can be filtered separately once the
common filter is obtained.

Actually, one should not simply concatenate. To avoid bias, each data trace
should be scaled to the same RMS amplitude. This is one form of weighting. Diver-
gence correction is another example of weighting that removes bias. In addition to
avoiding bias, weighting may also be useful as a preconditioner for improving accuracy
and convergence. Prewhitening is one example of this. It is used to reduce the
influence of noise outside the useful signal band on the inverse filter design.

Simultaneous pre- and post-NMO deconvolution

Following Claerbout (1986), let bub be convolution with the unknown bubble
prediction filter bub, rev be convolution with the unknown multiple dereverberation
filter rev, and NMO t represent spherical and normal-moveout correction. Denoting
the identity operation by I, we have then that

J/ = (I-rev) NMO t (I- bub) data R (2.14)
and J is given by

- [ SH,,, (NMO t (I - bub) data) , (I - rev) NMO ¢ SH,; (data ) ] (2.15)

14



The Gauss-Newton step for the filter perturbations é;,;, and 8,,, is computed from
SH,., (NMO t (I - bub) data) 6,,, +
(I - rev) NMO t SH,,; (data) 6,5, ~ (I-rev) NMO ¢t (I- bub) data ,(2.16)
which is more loosely written as
6,y NMO t (I~ bub) data +
(I-rev) NMO t §,,, data ~ (I-rev) NMO t(I- bub)data . (2.17)
With initial guess bub = rev = 0 this reduces to Claerbout’s form:
0,ep NMO t data + NMO t §;,; data =~ NMO t data

In that investigation he did not to proceed beyond the first Gauss-Newton step, elect-
ing instead to indicate how one might proceed by relinearizing with (2.16).

Forming JT J involves auto- and cross-correlation of data partially deconvolved
by either rev or bub but not both. The second derivative is more complex than JT J
because the cascade of rev and bub filters is nonlinear. There is a component of the
nonlinear term K that is independent of the current estimates of the filters rev and
bub , however. The entries of K are the dot products of the various derivatives of J
with the vector f . Examining formula (2.15) for J above, we can see immediately
that the rev derivatives of the first half of J and the bub derivatives of the second
half of J are identically zero. The remaining crossterms are

af .
Orev dbub SH,., (NMO t SH,,; (data ) ) (2.18)

Thus, K takes the form of a symmetric 22 block matrix with the diagonal blocks
zero and the off-diagonal blocks dot products of shifted versions of moveout and gain-
corrected delayed copies of the data with the current estimate of the deconvolved data.
That this is not just correlation of the input and output of deconvolution reflects
Claerbout’s underlying observation that neither normal-moveout correction nor gain
correction commutes with debubble (or dereverberation) filtering.

2.4 SURFACE-CONSISTENT PREDICTION-ERROR FILTERING

I turn now to the problem at hand: designing one filter for each surface shot and
receiver station of a complete seismic survey. Generalizing from the previous examples,
I now seek to minimize the norm of f where the components of f are the filtered
traces

Jij = (I-8;)(1-g;)d;; . (2.19)
The gradient J of f takes the block form
- [ SHL((T-g;) dy) , (I-8;)SH, (d;) ] (2.20)
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with zero blocks for all other i and j in each row. Invoking the commutative law of
convolution, I can rewrite this as

~[SHL((1-g;)d;) , SH, ((I-8)d) ] : (2.21)

It is now immediate from (2.7) that the Gauss-Newton step is found by solving the
least-squares system

6s;(1-g;)di; + 8g;(1-8;)d;; =~ (I-g;)(I-8;)d; . (2.22)

The matrix dimensions for this system are quite large, however. Using the dimen-
sions of the small data example from the previous section, the number of elements in
/ , and the number of rows in J, is close to 9 million. The number of columns in J is
the number of filter coeflicients being designed which is several thousand. This means
that to work directly on the overdetermined system (2.22), I have to anticipate and
manage I/O to and from secondary storage in addition to the computation involved in
this sparse matrix multiply. Alternatively, I can sacrifice the superior numerical condi-
tioning associated with working directly with J and use JT J with, say, SYMMLQ
instead to keep all dimensions down to a few thousand. In the latter case, y=J7 Jz
looks like Fig. 2.5. This involves external I/O as well, but only to read each trace once
during the pass.

do itrace=1,ntrace
strace=conv(1-g(j),trace(itrace))
gtrace==conv(1-s(i),trace(itrace))
temptr=conv(xs(i),strace)+conv(xg(j),gtrace)
ys(i)=ys(i)+xcorr(temptr strace)
y8(i)=yg(j)+xcorr(temptr,gtrace)

end do

FIG. 2.5. Code fragment to perform y=J7T Jz for surface-consistent prediction-error
filter design. Here g and s are initial guesses for the filters and conv is convolution,
xcorr Is cross-correlation. In principle, strace and gtrace could be precomputed. In
practice, it costs less to recompute them than to retrieve them from disk.

How much of a sacrifice is it to take the J7 J route? Conventional wisdom is
that the number of conjugate-gradient iterations required for convergence increases,
and, to a lesser extent, numerical accuracy decreases. If the problem is well condi-
tioned, that is if many of the largest eigenvalues of JT J are close to each other, con-
vergence is quite rapid. I tested conditioning experimentally for the problem of design-
ing a single filter for the field profile shown in Figure 2.6. I chose to design a 132 msec
filter with a 60 msec gap. Figure 2.7 exhibits the filters designed using J and JT with
LSQR and those designed using J7 J with SYMMLQ. Figure 2.8 displays the
corresponding deconvolved gathers. LSQR needed seven iterations to generate its
filter; SYMMLAQ required ten iterations with comparable tolerances. The low frequency
content of the two prediction filters is markedly different but the deconvolutions are
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FIG. 2.7. Prediction filters designed to deconvolve the field gather of Fig. 2.6. The
LSQR filter is an iterative solution to the overdetermined least-squares system of equa-
tion (2.10). The SYMMLQ filter is an iterative solution to the corresponding normal
equations (2.9). The filters differ, but produce identical deconvolutions, (See Fig. 2.8.)
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nearly identical. This reflects the lack of corresponding low frequencies in the data; my
filter design was unconstrained outside the bandwidth of the data. Conclusions: 1) I
don’t require the additional numerical accuracy of LSQR in order to obtain a reason-
able deconvolution of these data, 2) the moderate increase in the number of iterations
required by the SYMMLQ design is a modest price to pay for the corresponding
simplification in program design and I/O management.

Designing surface-consistent filters for the whole survey is more involved than
designing a single filter for a single gather. The surface-consistent constraints compli-
cate the discussion of conditioning. This is, after all, where nonlinearity arises. Even if
deconvolution of individual gathers is a well-conditioned process, unraveling the
interrelation between the gathers might be poorly conditioned. My previous experience
with surface-consistent trace balancing (Levin, 1985) raises this possibility. There I
needed several dozen iterations to achieve convergence. This was quite different from
my experience with surface-consistent residual statics solutions (Biondi and Levin,
1985). There we found the decomposition of time shifts into surface-consistent com-
ponents to be remarkably well-conditioned. Which applies to surface-consistent predic-
tive deconvolution?

If I were to simply compute prediction-error filters 1+¢, for each trace, surface-
consistent decomposition would try to fit these with (1+¢,)(1+¢,). Canceling the
unity at zero lag, we get ¢, ~z¢, +¢, +¢, €,. If the €’s are small, the nonlinear cross-
term is small and the linear fit, ie. the well-conditioned residual statics solution, dom-
inates. If the €’s are large, the nonlinear term dominates and we are in the trouble-
some trace-balancing regime. Physical processes that reduce energy, such as attenua-
tion and transmission loss, will make € small. This argues that the surface-consistent
unraveling will be well conditioned.

In a larger sense, it is the criterion of minimum prediction error that is really
working in our favor. In tackling equations (2.22) what we seek is not highly accurate
values for the perturbations 8s; and 6g;. We really seek values that reduce the predic-
tion error. The usual measures of matrix conditioning look at the prediction error sur-
face and give us a measure of how long and narrow the bottom of the valley is. If we
think about pouring a little water into this valley, what they measure is how far away
from the center of this valley you can be and still get wet feet. The minimum-
prediction error criterion is interested in altitude, not latitude, however. As Figs. 2.7
and 2.8 show, the prediction error will change imperceptibly as your choice of filter
wanders throughout the the bottom of the long, narrow valley.

To confirm these conclusions I used SYMMLQ to design surface-consistent 64
msec shot and geophone deconvolution filters for the data in Figure 2.1. The result of
5 iterations, displayed in Figure 2.9, is much closer in appearance to the single-trace
deconvolution of Figure 2.4 than either of the gather-by-gather deconvolutions in Figs.
2.2 or 2.3. The prediction error is almost ten times smaller than that shown in Fig. 2.2
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FIG. 2.9. Deconvolution of the data in Fig. 2.1 with shot and geophone consistent
filters designed simultaneously. Filter lengths were 64 msec. Much superior to the cas-
caded deconvolutions of Figs. 2.2 or 2.3, this stack is close to the result of single-trace
prediction error filtering in Fig. 2.4. Noise is better controlled and reflector continuity
is somewhat stronger here, a result of the surface-consistent averaging.
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and the reflection events at early times show better continuity than the single-trace
deconvolution. This illustrates the superior performance of simultaneous filter design

and shows that the problem is quite manageable.

In the next two sections I will apply surface-consistent prediction-error filtering to
two other seismic lines, one land and one marine. The land data is distinguished by
very good signal to noise and a decidely irregular recording geometry. For the marine
example, I design surface-consistent gapped deconvolution filters for the suppression of
seafloor multiple trains.

2.5 SAN JOAQUIN VALLEY - IRREGULAR GEOMETRY

Figure 2.10 is a stack of a line from the San Joaquin Valley collected and prepro-
cessed by Western Geophysical. The source is Vibroseis and the recording geometry is
an asymmetric split spread as shown in the stacking diagram of Figure 2.11. The data
are corrected for spherical divergence and trace balanced. The recording geometry
irregular with changing spreads and shot spacing. This does not complicate the com-
putation; the trace-by-trace loop of Fig 2.5 remains the same. The signal-to-noise is
quite high, high enough, indeed, that conventional spiking deconvolution does a bit
better job of cleaning up the data. I will explain this shortly; first I study with this

line is how the irregular geometry influences the filter design.

In Figure 2.12, I"applied trace-by-trace spiking deconvolution before stack with a
64-sample filter. Autocorrelations were estimated from a window containing the
reflections from 1 to 5 seconds on the stack of Fig. 2.10. Normal-moveout correction

was not applied before deconvolution.

Figure 2.13 displays surface-consistent shot and geophone filters designed by the
procedure described in Section 2.4. Each filter was 32 samples long so that the com-
bined length was the same as for the trace-by-trace deconvolution. Again 5 iterations
were used in the conjugate-gradient least-squares solver. (Another five iterations, start-
ing with these filters as input, produced changes only in the third significant digit.)
The influence of geometry on individual deconvolution filters can be seen by comparing
the fold of coverage for shot and receiver stations in Fig 2.14 with the corresponding
filters in Fig 2.13. Higher frequency filters go with higher fold. The additional chan-
nels help to push down the noise in the spectral gaps and the inverse filter increases
the gain to compensate for the added spectral color. After applying these filters, the
stack in Figure 2.15 closely matches that of conventional deconvolution (Fig. 2.12).

Individual traces before stacking also are remarkably similar. Figures 2.16
through 2.18 show some CDP gathers selected at roughly equal intervals across the
line. In the few places where differences are seen, the single-trace deconvolution shows
better reflector continuity. These spots appear as small static misalignments on the
surface-consistent result, but closer examination shows the corresponding locations on
the unprocessed gathers in Fig. 2.16 are contaminated with coherent, low-frequency
ground roll.
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FIG. 2.11. Stacking diagram for the profile in Fig. 2.10. The recording geometry is an
asymmetric split-spread. The profile deviates only a small amount from a straight line.

CDP fold ranges between 13 and 42.
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FIG. 2.13. Shot and receiver deconvolution filters designed for the surface-consistent
deconvolution in Fig. 2.16. The shot filters are consistent across the line, reflecting the
controlled Vibroseis source. The geophone filters also exhibit this waveshape to a lesser
degree. I attribute this also to the controlled source being approximately the same on
all traces. Frequency content of the inverse filters correlates well with the number of
traces per station in Fig 2.14. High fold produced sharp, high frequency inverse filters.
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before 1 s, coherent arrivals are readily picked on the individual traces.
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FIG. 2.17. Individual CDP gathers in Fig. 2.16 after trace- by-trace deconvolution. As

expected wavelets are compressed coherent low-frequency ground roll is suppressed
and incoherent high-frequency noise is boosted.
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FIG. 2.18. Individual CDP gathers in Fig. 2.16 after surface-consistent deconvolution.
Results are very similar to the trace-by-trace result of Fig. 2.17. Where they differ is
mostly on inner offset traces that contain ground roll on the unprocessed gathers in

Fig. 2.16. For these traces single-trace decon has suppressed more of the ground roll
than surface-consistent decon. 31



Ground roll does not fit the surface-consistent model I've used. It appears on
varying portions of some traces and not at all on other traces within the common-shot
and common-receiver gathers. As a result it is not well predicted and suppressed by
surface-consistent deconvolution and further acts to degrade the the deconvolution of
that portion of the data that does fit the model. On the near-offset traces ground roll
begins at almost the start of the trace and continues to the end. On these traces it is
highly predictable by a single filter and so is strongly suppressed by single-trace decon-
volution. Surface-consistent deconvolution sees only a average over all the offsets and

so finds it significantly less predictable by a single filter.

In this example, the departure of the data from the surface-consistent model was
not large. Low-cut frequency filtering prior to deconvolution could handle the problem
here. It illustrates though that the surface-consistent model is only an approximation.
The departure from the model is a slowly decreasing function of offset, i.e. the ground
roll arrives later and later and finally disappears. Such slowly-varying deviations from
the model have been considered by Claerbout (1982). He suggests that instead of con-
straining the adjustable parameters to exactly fit the model, the sum-of-squares for the
unconstrained problem should be modified by adding quadratic terms that penalize
against all but small, smooth departures from the model. For surface-consistent decon-
volution, this means specifying two filters for each trace and minimizing the sum of the
squares of trace—by-trz‘ice prediction errors plus the sum of squares of some spatially
lowcut version of the filters. I expect there will be considerable practical difficulty
making this work. In addition to the units or scaling problem arising from adding data
and filter terms, the unconstrained problem is massively underdetermined and will lead
to numerical problems in the iterations. I do not recommend developing this extension
to surface-consistent deconvolution until we have further experience with smaller appli-
cations.

2.6 THE FAILURE OF MARINE MULTIPLE SUPPRESSION

One of the early applications of surface-consistent deconvolution was in the
suppression of marine multiple reflections (Morley and Claerbout, 1983.) Similar to
conventional gapped deconvolution, this method assumes nearly vertical emergent ray-
paths and water deep enough for the source bubble pulse to die away before the onset
of the seafloor reflection (see also Nedlin, 1985.)

Like Morley and Claerbout, I selected a marine profile from the Barents Sea which
meets these criteria. The near-offset section of Figure 2.19 and the common-shot
gather of Figure 2.20 show the features of this line. The duration of the source
waveform is about 100 ms as measured from the direct arrival, and the nearly flat
seafloor reflection arrives at about 400 ms, with a velocity of 1.46 km/s as determined
from fathometer readings. The 2.58 km/s refraction seen at the further offsets shows

that velocity increases rapidly below the seafloor. (This refraction is not directly from
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FIG. 2.19. Near-offset section from the Barents Sea. The offset is 294 m and the trace
spacing here is 25 m. Prominent features are the seafloor reflection at 4 s; its first
multiple at .8 s; a strong reflector dipping at about threée degrees arriving at about 1.5
s; and its first pegleg arriving just before 2 s. Display gain here is proportional to ¢ 2
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FIG. 2.20. Common-shot gather from the middle of the Barents Sea line. In addition
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FIG. 2.21. Near-offset section after trace-by-trace gapped deconvolution.
moveout correction at primary velocity was applied before deconvolution and
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removed

afterwards before display. The filters were 128 ms long and began just prior to the
seafloor reflection, a gap of 380 ms. t2 weighting was used to reduce the influence of

the strong, shallow seafloor reflection on filter estimation and increase pegleg
tion. The multiple attenuation is good on this single offset panel, but, as
shows, is only fair on the stack. 35
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FIG. 2.22. Near-offset section after surface-consistent deconvolution.
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Again, normal-

moveout was applied before deconvolution and removed afterwards. Shot and receiver
filter lengths were each 128 ms; both were specified with a gap of 380 ms. Unlike
single-trace gapped deconvolutlon the process was unable to attenuate even the pure

seabottom multiple. These data do not fit the surface-consistent model.
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the seafloor; the strong peak that arrives at about 1.2 km offset implies a critical angle
of 60 * and a seafloor velocity about 1.7 km/s. Detailed refraction modelling bears this
out.)

After normal-moveout correction, I applied the ¢ -z surface-consistent deconvolu-
tion developed in this chapter to the profile. The shot and receiver filters were
specified to have a gap of 380 ms, i.e. just prior to the onset of the seafloor reflection,
and a length of 32 samples (128 ms) beyond that. Figure 2.21 is the near-offset section
after single trace-deconvolution; Figure 2.22 is the near-offset section after surface-
consistent deconvolution.

The surface-consistent deconvolution was unable to suppress the seafloor or pegleg
multiples. The single-trace deconvolution did a reasonable job on the near-offset panel,
but, as Fig. 3.6 will show, the improvement is only fair on the stack. The problem is
two-fold. First, the pegleg amplitudes do not fit the same model as the pure seabottom
multiple train. This is a well recognized problem and will be discussed in greater detail
in the next chapter. We can expect to suppress peglegs or the pure seabottom multi-
ples but not generally both. Usually we downweight the pure seabottom multiple as
Pve done here because it is normally attenuated by the stack. Second, the deep water
requirement conflicts with the vertical raypath assumption. The seafloor texture that
we want the prediction-error operators to sense is diffused by spreading and healing of
waves as they transit between the seafloor and the surface. This texture is readily seen
in the enlargement of Figure 2.23. As a result, each new multiple bounce arrives with
a different composite wavelet that is not properly predicted by vertical time delays
either before or after normal-moveout correction. In the next chapter I will use mul-
tichannel wave extrapolation to successfully unravel these effects.

2.7 PHASE
Minimum phase

For the three field datasets in this chapter I designed one-sided, causal
prediction-error filters. I did not constrain the filters to be minimum phase. However,
by converting the inverse filters to reflection coefficients, I found they all were. If so
desired, minimum phase can be forced by adapting the Burg maximum-entropy decon-
volution to estimate surface-consistent reflection coefficients (Burg, 1975.) By estimat-
ing one reflection coefficient for each shot, then one coefficient for each recewver, then a
second for each shot, etc., the minimum-phase property is automatic when reflection
coefficients are constrained to be less that unit magnitude. This interleaving is not the
same as simultaneous design, but is a good deal closer than designing all the reflection
coeflicients for each shot and then all the reflection coeflicients for each receiver. A
drawback of this method is that it requires a separate pass over the data for each new
coefficient. This will generally be several times more than the half dozen passes ['ve
used in the least-squares prediction-error filtering.
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Zero phase

The two land field examples used in the chapter were acquired with Vibroseis
sources. One expects these data to exhibit an approximately symmetric, two-sided
source waveform. Yet all my processing was done with one-sided deconvolution filters.

Symmetric, two-sided (zero-phase) source filters can be generated with minor
modifications to the least-squares procedure. Specify one side of the filters and reflect
them symmetrically to make two-sided filters. Cross-correlations must also be summed

symmetrically. The receiver filters may, and ought to, remain causal.

While symmetric filters are easily incorporated into surface-consistent deconvolu-
tion, one has to question whether this is really how Vibroseis data is best handled.
The source is very repeatable; with a constant or slowly varying source waveform,
surface-consistent estimation of common-receiver filters degenerates to a gather-by-
gather deconvolution. Also, the far-field source waveform is not really zero-phase both
because of unknown phase shifts introduced by baseplate coupling and because of
(minimum-phase) scattering, multiple reflection, and attenuation in the vicinity of the
source. Finally, it is common to apply a phase-shifting filter before deconvolution that
is given by minimum-phase rearrangement of the Vibroseis wavelet (Gibson and
Larner, 1984.) With this source reshaping, a one-sided source filter is appropriate.

Linear phase

One of the potential benefits of surface-consistent deconvolution suggested by
Ronen and Claerbout (1985), is improved residual statics estimation, i.e. determining
unknown linear or more general phase shifts. By equalizing spectra surface-
consistently, trace-to-trace cross-correlation may be improved without arbitrary
realignment of reflectors on the input traces. Surprisingly, they were unable to design
surface-consistent linear phase shifts that improved data quality. They argue this
didn’t work because the stack power, or cross-correlation, that they maximized is not
identical to maximizing reflector continuity. The work in this chapter suggests that
the problem may also be that they determined their corrections using gather-by-gather
estimation rather than simultaneous estimation. An example by Rothman (1985, Fig.
8) supports this explanation.

Ronen and Claerbout’s result does not mean that surface-consistent deconvolution
degrades conventional residual statics estimation. Fig 2.24 shows quality control plots
of static picks for the San Joaquin Valley data. These clearly demonstrate that decon-
volution, both trace-by-trace and surface-consistent, significantly improved the reliabil-
ity and distribution of cross-correlation picks.
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FIG. 2.24. Quality control plots of static time shifts picked for the San Joaquin Valley
examples in section 2.6. The attributes displayed are a histogram of picked static
values, the distribution of the individual picks, and the average normalized cross-
correlation at these picks. We see that deconvolution has reduced the scatter of picked
time shifts and increased the average cross-correlation for most of the line.
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Unknown phase

Prediction-error filtering is not the only deconvolution method based upon minim-
izing or maximizing a global measure of goodness. Chief among these are the variable
norm methods that try to maximize some measure of spikiness in the output (Gray,
1979.) Because phase is an unknown, these typically require multiple channels in order
to reduce the variance of the estimates (Rocca and Kostov, 1987). Thus, it is reason-
able to formulate and solve these problem in a surface-consistent setting, but I have
not tried to do so for this thesis.

I did try one experiment in unknown phase while studying surface-consistent
prediction-error filtering. In this experiment I let the shot filters be two-sided but not
constrained to be symmetric. The least-squares design was unstable, with condition
number estimates exceeding 10% and the quality of the data deteriorated when such
filters were applied. This occurred despite diagonal damping that was built into the
least-squares design. The shot filters that resulted were nearly symmetric, matched
filters to the Klauder wavelet for the correlated sweep. This suggests that additional
constraints will need to be incorporated in order to design deconvolution filters with
unknown phase.

2.8 SUMMARY

In this chapter I've established that much of the potential power of surface-
consistent deconvolution can be lost when implemented by one or multiple gather-by-
gather deconvolution passes through the unstacked data. Using some simple tools for
nonlinear least-squares, I have developed an effective and efficient surface-consistent
deconvolution in the natural z -t coordinates that generalizes conventional trace-by-
trace prediction-error filtering. This procedure converged in three to five passes over
the data for the field examples I studied.

Two of the examples clearly fit the surface-consistent model, another clearly
didn’t. It is hard to justify not using surface-consistent deconvolution in the former
case, but it happened that trace-by-trace deconvolution was a bit better in one of those
example because signal-to-noise was very good and I had not tried to filter out ground
roll before deconvolution.

For the marine field example that didn’t fit the model, trace-by-trace deconvolu-
tion was much better at suppressing water-path multiples. For pegleg multiples, stack-
ing dilutes this gain. In the next chapter I use a different spatial constraint — seafloor-
consistency — to improve pegleg suppression.

41



42



