Chapter 3

Estimating Interval Velocities

In Chapter 2, I showed how the average slowness of the medium can be obtained following
migration by a preliminary slowness model. The reason for obtaining average slownesses
first is that the curvature in the image of a reflector in a post-migration CRG is affected
by all slowness errors above that reflector. These average slownesses are, however, related
to the interval slownesses. This chapter discusses obtaining the interval-slowness model
(or interval-velocity model) from the average slownesses. This interval-velocity model is

what we need to migrate the data.

3.1 LAYER STRIPPING

For one layer, the interval slowness is the same as the average slowness. Therefore, if the
method is applied to the top layer only, the interval slowness of that layer will be obtained.
When the interval slowness of that layer is known, it can be stripped from the medium
when estimating the average slowness of the material below. The process is repeated for
the other layers; the top layer is always stripped after its slowness has been determined.

This scheme has two limitations. First, it assumes that the medium is layered. Second,
it requires human interaction rendering analysis of a large number of layers tedious. In
the rest of this chapter, I will discuss schemes that do not have these limitations.

The idea of layer stripping is, however, a useful concept that can simplify the analysis
and make it cheaper. Suppose the velocity down to a given depth is known, either by
an independent measurement or by the iterative method presented here. In this case, the
portion of the medium down to that depth can be excluded from the velocity analysis.

The data need to be downward continued to that depth just once. This stripping can be
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done regardless of whether the stripped region is homogeneous or not. All that is assumed

is that the velocity down to that depth is known.

3.2 OBTAINING INTERVAL VELOCITIES FROM AVERAGE VE-
LOCITIES

Assuming the depth axis is sampled uniformly, the average slowness at the j-th layer is
J

wy
_ 1

1

-
Il

where w; is the interval slowness of the i-th layer. The inverse of (3.1) is obtaining interval
slownesses from average slownesses. The interval slowness, w;, is obtained from the average

slownesses at the top and bottom of that layer,
wi = 1w — (1 — Vw;—q . (3-2)
In Chapter 2, average slownesses were obtained after migration by equation (2.17),
W = Yy, . (3.3)

We can, therefore, use equation (3.2) to obtain interval slownesses after obtaining average
slownesses from equation (3.3). One problem with equation (3.2) is its great sensitivity in
obtaining interval slownesses directly from average slownesses. The reason for this sensi-
tivity is that in equation (3.2) the difference between two quantities is taken, magnifying
the errors of those quantities. The problem becomes worse at greater depths because the
error in average slownesses is magnified by multiplication by ¢ or (i — 1) in equation (3.2).
Doing the inverse—calculating average slownesses from interval slownesses—requires sum-
mation and is more tolerant to error. If interval slownesses were obtained directly from
equation (3.2), they would have wild and unrealistic fluctuations. These fluctuations can-
not be simply smoothed because they are unrealistic to start with. Another problem with
equation (3.2) is that some 4’s may belong to multiples or coherent noise. The average
slownesses they give will also result in unreasonable values for the interval slownesses.

These problems are similar to the problems of obtaining interval velocities from stacking
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velocities in conventional velocity analysis. To solve these problems in conventional velocity
analysis, Toldi (1985) proposed a method in which the model is perturbed using the
gradient of an objective function. The gradient is calculated at the current model position
and requires calculating the derivative of the objective function in the stacking-velocity
space.

In Toldi’s scheme, knowing the position of the model in the interval-velocity space
implies knowing its position in the stacking-velocity space, because the two spaces are
related via the Dix equation. In the scheme presented here, the space that I search
(9(7,7) in equation (2.7)) is a residual-velocity space in which the current model position is
unknown, since knowing the residual velocities implies knowing the true velocities, thereby
signaling the end of the search! On the other hand, here I know the final model position in
the residual velocity space; it lies on the curve 7(z) = 1 as shown in Figure 3.1b. We can
compute the gradient at this position (the light line in Figure 3.1b) and march till we find
the current model position in the residual velocity space (the heavy line in Figure 3.1b).
This position gives us the error in the initial velocity model we used in migration, thus

enabling us to modify the model.

While we are searching in the residual velocity panel, our goal is to bring the curve
7(2) as close as possible to the peaks without violating any constraint on the model. The
objective function, T, that we want to maximize is therefore the sum of the semblances
along the that curve. That is,

=N

L=>_ 9(r%) (3.4)

where N is the number of depth points.

Starting at v(z) = 1, we change the initial model such that I' is maximized. To
calculate this change in the interval-slowness model, we need to calculate the gradient of
the objective function. The j-th component of the gradient of the objective function at

the current model position, W, is

(3.5)

The derivative T /d~; can be calculated by finite differencing at each depth. The derivative



-34-

interval velocity (km/sec)
18 16

R ] R ]

2 g

=4 =4

(o] K

B B

~r ~
0 -

(a)

FIG. 3.1. (a) Interval-velocity model. The velocity in this model is constant. (b) Residual
velocity panel. The light line is the position to which we want to drive the model. Once

the model reaches this position, the velocity used in migration is the same as the velocity
of the medium.

87 /dwj is obtained analytically from the definition of ~ in equation (2.4),
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A more straightforward method of obtaining interval slownesses is to start by assuming
that the peaks in the residual velocity panel represent the error in the average slownesses.
We then make a least-squares fit to these peaks thereby obtaining the average velocities.
With these average slownesses we associate an interval-slowness model. To ensure that
these average slownesses give reasonable interval slownesses, constraints are imposed on
the interval-slowness model. These constraints may include smoothness (especially in the
lateral direction) and any available a priori information about the velocity. It is well known
that sharp variations in velocities cannot be detected by integral methods, namely methods
that use only traveltime information (Stolt, 1986). If these sharp variations exist, they
will show up in the reflectivity image obtained by migration. Also, unnecessary velocity
variations in the lateral direction create imaginary fault-plane reflections (Cleerbout, 1985).
It is therefore sensible to impose a smooth-velocity-model requirement.

Let w' be the average slowness vector implied by the picked ’s, (using equation (3.3));
let W be an a priory slowness model vector used as a constraint (if available); then we

want to find w that minimizes
j=N 2 =N t=N
FE = Z [G)j(w;) - ‘w;] + o Z [(w; - w,-_1)2 + (w,' - w,~+1)2] + ﬂ Z (w.' - 11),')2 , (3.6)
j=1 i=1 i=1

where N is the number of layers, « and 3 are weights for the constraints, and bars denote
averaging. The first summation in equation (3.6), minimizes the difference between the
resulting average-slowness model, w, and the picked average-slowness model, w'. The
second summation is the smoothing constraint; the difference between w; and its neighbors
w;—1 and w;; is minimized. The third summation minimizes the difference between the
solution w and the a priori model W. The weights a and 8 penalize the model for going far
from the constraints. Putting the weights outside the summation assumes that they are
constant for all parts of the model. This assumption can be relaxed without change in the
algorithm. Note that the interval slownesses are used implicitly in the first summation;
they enter the summation via the average slownesses. However, the constraints in the
other summations explicitly use interval slownesses.

To minimize E in equation (3.6), we take its derivative with respect to each w; and
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equate it to zero. Thus,

J=N _

ow; N
> [@5(ws) — @] B T QWi — v —win) + Blwi— @) =0, (3.7)
i=1

Note that
90, = 1 for j5>1
8w,~ J
=0 for j<i1.

Finding interval slownesses, therefore, amounts to solving the equation
Aw + Tri(~a,2a+ 8, —a)w =BwW + 8w, (3-8)

where A is a matrix whose entries are

k=N

1
A= > R
k=max(1,5)
B is an upper triangular matrix whose entries are
1 .
B;; = = for 7>1
J
= 0 for 1<1,

and Tri(-a,2a+ 3, ~a) is a tridiagonal matrix with 2a -+ B as the diagonal elements and

—~a as the off-diagonal elements.

3.3 THE TWO-DIMENSIONAL PROBLEM

The analysis in the previous section treated each CRG independently. This treatment
does not take into account lateral variations in velocity. When lateral velocity variations
exist, all CRG’s should be analyzed simultaneously.

In order to analyze CRG’s simultaneously, the medium is divided into rectangular cells.
The velocity errors in a CRG are then projected along all the ray paths and equation (3.8)

1s solved for each path. The corrections from all rays crossing a cell is averaged. This
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projection of velocity error is similar to projection of traveltime error in tomographic
techniques (e.g. Dines and Lytle, (1979))

3.4 RE-MIGRATING THE DATA

The velocity analysis method presented in this thesis involves re-migrating the data every
time the velocity model is modified. Therefore, it is natural to ask whether we need to
migrate the data from scratch every time or if we can do a residual prestack migration. In
post-stack migration, the idea of residual migration is helpful, making expensive accurate
migration possible by doing a number of cheap approximate steps (Rothman et al., 1985).
It is natural to wonder if there is a parallel concept in prestack migration.

As mentioned in Chapter 1, for a constant velocity, prestack migration can be done by
zero-offset (or post-stack) migration after NMO and DMO. If the data is migrated with a

velocity v;, the process is written as
tmage; = Mig; DMO; NMO, data , (3.9)

where NMO, DMO, and Mig are the NMO, DMO, and post-stack migration operators.

If the new velocity is vq, then
tmage; = Mig, DMO, NMO,; data . (3.10)

We want to find the operator, A, that can be used to produce the new migrated image,

tmage,, from the previously migrated image, image;. That s,
tmage; = A image; . (3.11)
From equation (3.9), we have

data = NMO;' DMO; ! Mig;?! image; . (3.12)
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Now, equation (3.10) becomes

image; = Mig, DMO; NMO; NMO;'DMO;! Mig;! image;
= Mig, DMO; NMO;; DMO;! Mig;! image, , (3.13)

where NMO;;,=NMO; NMOI"1 is the residual NMO operator. If s; is the slowness
used in the first NMO and s; is the slowness used in the second NMO, the residual NMO
is done by NMO with a slowness s = \/sg — 82 if s, > 81, or inverse NMO with a slowness
s =1/s3 — s if 51 > s3. Therefore, we have found the operator A to be

A = Mig, DMO; NMO;;, DMO;! Mig;?!. (3.14)

Nothing can be done to simplify the operator A because the NMO, DMO, and migration
operators do not commute. Because A is not a prestack migration operator, re-migrating
the migrated profiles cannot be done by another prestack migration operator.

This conclusion implies that we need to re-migrate the data from scratch every time
we modify the velocity model. The reason for this conclusion is the non-commutativity of
the operators. In Al-Yahya and Fowler (1986), we arrive at the same conclusion by this
and other considerations. The most interesting of those considerations is the nonlinearity

of the double-square-root equation which is used in prestack migration.

3.5 A FIELD DATA EXAMPLE

The input to the velocity analysis scheme presented here is field profiles. In this example
I used marine profiles from the Gulf of Mexico. These profiles are well-sampled in the
receiver axis (receiver spacing is 12.5 m), and have been sub-sampled in the shot axis (to
make the source spacing 50 m). This arrangement is most suitable for profile processing
in which the receiver axis is the critical one and it need to be well-sampled while the shot
axis need not be heavily sampled. Two profiles are shown in Figure 3.2 and 3.3; a total

of 28 profiles were used, each having 240 receivers. Note the fault-plane reflection that

appears in both profiles.

The first step in the velocity analysis method of this thesis is migrating all profiles with

a preliminary velocity model. A model obtained by a rough conventional velocity analysis
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FIG. 3.3. Another marine profile from the survey. Note that the same fault-plane reflection
that appears in Figure 3.2 appears here, but at different offsets.
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can serve as a preliminary model. In this example, I used a constant-velocity model that
has the velocity of water (1.5 km/sec). Figure 3.4 shows the result of migrating the profile
in Figure 3.2 with this velocity and Figure 3.5 shows the stacked section, obtained by
summing along the shot axis. Only the water bottom is imaged correctly because the
velocity used in migration was correct only down to the water bottom. Below the water
bottom, the migrated profiles and stacked section do not represent the geology correctly.
Note the diffractions in Figure 3.4 which are caused by the finite cable length and some
boundary reflections (even though absorbing boundaries were used). These diffractions
are attenuated after stacking (as in Figure 3.5) if overlapping of profiles is dense enough;
overlapping of ten or fifteen profiles is considered dense enough. Note that the fault-plane

reflection is somewhat coherent indicating that the error in velocity at that depth is small.
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FIG. 3.6. (a) A typical post-migration CRG obtained from profiles migrated with the
water velocity. (b) A semblance panel obtained from the CRG in (a). The heavy line
through the peaks gives the slowness ratio 4 vs. depth. This curve is used to compute

average slownesses. No constraints on interval velocities are imposed at this stage. They
are imposed later when computing interval velocities.
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The next step is to sort the data to produce common-receiver gathers (CRG’s) from
the migrated profiles. A typical CRG is shown in Figure 3.6a. Note that only the water
bottom (at about .35 km) is flat. Other events are curved upward indicating that the
velocity that was used in migration was lower than the velocity of the medium for those
depths. By searching for curvature as a function of depth, the panel shown in Figure 3.6b
is produced. From this panel we obtain average slownesses from which interval slownesses
(or velocities) need to be computed. Note that the curve through the peaks is made
reasonably smooth but it is not constrained to give reasonable interval velocities. The

constraints are introduced later when interval velocities are computed.
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FIG. 3.7. A contour plot of the interval-velocity model obtained from the first iteration
using the semblances in Figure 3.6. Contour labels are velocities in km/sec.

The method outlined in the previous sections was used to compute interval velocities
and the result is the model shown in Figure 3.7. This model was obtained from one
iteration and may therefore have errors, but it should be closer to the real velocity model
than the constant-velocity model I used initially.

Figure 3.7 concludes the first iteration. We are ready to start the second iteration
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using the new velocity model as the starting model. The above sequence is repeated for
the second iteration. Figure 3.8 shows a profile migrated with this velocity model and
Figure 3.9 shows the stacked section. Note that reflectors are now more continuous than

they appear in Figure 3.5. The fault-plane reflection is also more coherent now.

To correct the error in the model of Figure 3.7, we examine the post-migration CRG’s.
A typical CRG is shown in Figure 3.10a, and the semblance panel is shown in Figure 3.10b.
We see that when the new velocity model is used, most images are now close to the curve
v =1 in the semblance panel meaning that the migration velocity is close to the velocity
of the medium. Some deep images slightly curve upward, however (making 4 < 1). The
water bottom reflection is also slightly curved downward which means that the velocity
used in migration above the water bottom is slightly higher than the water velocity.

The interval-velocity model obtained from analyzing the post-migration CRG’s is
shown in Figure 3.11. Figure 3.12 shows a profile migrated with the velocity model of
Figure 3.11 and Figure 3.13 shows the stacked section. Most of the differences between
Figure 3.9 and Figure 3.13 occur in the deep reflectors where they are more coherent in
the latter.

We could go on and do more iterations. However, the CRG and the semblance panel
shown in Figure 3.14 indicate that the velocity model we have reached is reasonably close
to the true velocity model. Events in the CRG are now aligned horizontally satisfying the
velocity analysis principle described in this thesis.

Chapter 2 mentions that the strength of the signal ih the stacked section is a measure
of the “goodness” of the velocity model and that we can search for a velocity model that
has the strongest signal. From an optimization point of view, the strength of the signal
is the objective function that we maximize as we search for the best velocity model. The
strength of the signal can be measured by the power of the stack, defined as the sum of
the squares of all points in the stack. Therefore, if we compute the power of the stack in
the example that is discussed here, we expect to see it increase from one iteration to the
next. This is the case in Figure 3.15 which shows the power of the stack as a function of
iteration. Note that the power increases five-fold in two iterations and most of the increase

is in the first iteration.
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FIG. 3.10. (a) A typical post-migration CRG obtained from profiles migrated with the

velocity model in Figure 3.7. (b) A semblance panel obtained from the CRG in (a). The
heavy line through the peaks gives the slowness ratio « vs. depth.

3.5.1 Comparison with conventional processing

I applied conventional processing to the same data set that was analyzed in the previous
section. Velocity analysis was done by hand-picking from conventional velocity panels.
The data was NMO-ed using these velocities and then it was stacked and migrated. The
interval-velocity model that was used in the post-stack migration was obtained from stack-
ing velocities by the Dix equation.

Figure 3.16 shows this interval-velocity model. This model is different from the model
in Figure 3.11 which was obtained by the method described in this thesis. Note that the
model in Figure 3.16 was obtained from picked rms velocities and that the model was not
adjusted to fulfill any requirement. In contrast, the model in Figure 3.11 was based on the

alignment of images and was adjusted iteratively to maximize this alignment. Note also
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FIG. 3.11. A contour plot of the interval-velocity model obtained from the third iteration
using the semblances in Figure 3.10. Contour labels are velocities in km/sec.

that the interval-velocity model shown in Figure 3.16 was obtained from rms velocities.
As explained previously, obtaining interval velocities from rms velocities is very sensitive
to errors.

Another way of comparing conventional velocity analysis with the method presented
here is through the rms velocities, as shown in Figure 3.17. The figure shows that the
rms velocities given by the two methods are different, especially near the bottom. In
Figure 3.17a, the two velocities are not far apart and they follow the same trend. In
Figure 3.17, however, the discrepancy between the two velocities is greater. This difference
in velocities is expected to give different migrated images.

Figure 3.18 shows the migrated stacked section. Note that the fault-plane reflection
which appears between .5 and 1 km in Figure 3.13 is absent in Figure 3.18. This ab-
sence of fault-plane reflection is expected because those reflections are attenuated by using
stacking velocities that are too low for the fault-plane reflection. The differences between

Figure 3.13 and 3.18 are mainly due to the difference in velocities used in processing the

two images
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FIG. 3.14. (a) A typical post-migration CRG obtained from profiles migrated with the

velocity model in Figure 3.11. (b) A semblance panel obtained from the CRG in (a). The
heavy line through the peaks gives the slowness ratio 7 vs. depth.
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FIG. 3.15. Power of the stack as a function of iteration for the example discussed in this
section. The first iteration is the starting model of constant velocity.
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FIG. 3.16. Interval-velocity model obtained from conventional processing. Compare this

figure to Figure 3.11.
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FIG. 3.17. Comparison of rms velocities at two locations. The solid curve is the curve
obtained from the method presented here and the dashed curve is obtained from conven-
tional processing. In both cases the two methods do not give identical results, especially
in (b). At both locations, there is a large discrepancy near the bottom.
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FIG. 3.18. The image obtained by conventional velocity analysis followed by NMO, stack-
ing and migration. Compare this figure to Figure 3.13.
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3.6 A SYNTHETIC EXAMPLE

The field data example described in the previous section did not have significant lateral
velocity variations. To see how the method works when there is lateral velocity variation,
a synthetic model is used in this section. The model, shown in Figure 3.19, has lateral
velocity variation because of the anticlines and the wedge. It also has strong vertical

velocity variations at some interfaces.

Like the field data example, the first preliminary model used in migrating the data has
a constant velocity of 1.5 km/sec. Figure 3.20 shows the migrated and stacked section and
Figure 3.21 shows a CRG and a semblance panel. Below the top reflector, velocity is too
low. This is manifested in the CRG by the upward curvature of images. These curvatures
are used to modify the initial model. The result is the model shown in Figure 3.22.
Even though this model is not close to the true model yet, it is a better model than
the constant-velocity model I initially used. It shows a high-velocity region between .5
and 1 km, followed by a lower velocity region, but it does not show the anticlines clearly.
Note that at the left and right edges of the model, there is not enough coverage to provide
information about the velocity. In Figure 3.22 and later figures, only those parts of the

model that have enough coverage will be shown.

When the profiles are migrated with the model in Figure 3.22, the stacked section
of Figure 3.23 is obtained. Figure 3.24 shows some post-migration CRG’s in which the
lowest two images still have some curvature. After four iterations, the velocity model in
Figure 3.25 is obtained. Note that some artifacts exist in the final model that did not
exist in the original model. These artifacts result from the lack of constraints between
reflectors; the velocity can vary between two reflectors without affecting the image. The
post-migration CRG’s shown in Figure 3.26 have images which are aligned horizontally
which means that the process has converged. The corresponding stacked section is shown
in Figure 3.27. This stacked section shows the reflectivities in the model. Note that
although the velocity model obtained by the velocity analysis was not identical to the

original model, the reflectivity map, namely the migrated and stacked section, closely

resembles the original model.
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FIG. 3.19. The synthetic model which is used as an example.
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FIG. 3.20. The image obtained by migrating the synthetic profiles with a constant velocity
of 1.5 km/sec and stacking.
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FIG. 3.21. (a) A post-migration CRG obtained from the synthetic profiles mlgrated with

a constant velocity of 1.5 km/sec. (b) A semblance panel obtained from the CRG in (a).
The heavy line through the peaks gives the slowness ratio v vs. depth.
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FIG. 3.22. A contour plot of the 1nterval-veloc1ty model obtained from the first iteration
from the synthetic data using the semblances in Figure 3.21. Contour labels are velocities
in km/sec.
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FIG. 3.23. The image obtained by migrating the synthetic profiles with the velocity model
in Figure 3.22 and stacking.
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FIG. 3.24. Some post-migration CRG’s obtained from the synthetic profiles migrated with
the velocity model in Figure 3.22.
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FIG. 3.25. A contour plot of the interval-velocity model obtained after four iterations from
the synthetic data. Contour labels are velocities in km/sec.
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FIG. 3.26. Some post-migration CRG’s obtained from the synthetic profiles migrated with
the velocity model in Figure 3.25.
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FIG. 3.27. The image obtained by migrating the synthetic profiles with the velocity in
Figure 3.25 and stacking.

3.7 SUMMARY

In this chapter, I obtained an interval-velocity model (or interval-slowness model) after
migration with a preliminary velocity model. The problem was formulated so that con-
straints can be put on the interval-velocity model. The method proposed in this thesis
was applied to marine and synthetic data sets. The process was terminated when events
in the post-migration CRG became aligned horizontally. Using the principle explained in
Chapter 2, this alignment means that the velocity used in migration is close to the velocity
of the medium. I have also shown that in each iteration the data need to be migrated from

scratch.



