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ABSTRACT

The goal of seismology is to obtain Earth properties from seismic data. I derive formu-
las based on nonlinear least squares iterations to find the elastic properties of the Earth
corresponding to the synthetic wavefield that best matches the seismic observations. Pri-
mary P- and S-wave reflections, mode converted waves and Rayleigh waves are all theo-
retically useful in the inversions. Beginning with a starting guess, the Earth properties
are iteratively updated using a preconditioned conjugate-gradient algorithm. The gradient
direction is cast in terms of two wave propagations so Frechet matrices are not necessary
and the calculations are easily implemented on fine grain parallel computers.

Although the derivation is in three dimensions and commences from the anisotropic
elastic wave equation, I have chosen to concentrate on the special case of an isotropic Earth
and solve for the compressional and shear wavespeeds. This case is important because
the wavespeeds are the properties that have the largest influence on seismic waves. The
sudden (high-wavenumber) variations in the wavespeeds at layer boundaries determine the
amplitudes of reflected waves while the gross (low-wavenumber) variations in the layers
determine the traveltimes of reflected and transmitted waves.

The method is tested by inverting 2D synthetic reflection seismograms (shot profiles),
2D synthetic transmission seismograms (VSP’s) and real reflection seismograms (a shot
profile). The wave propagations in the tests are done using elastic finite differences to
allow for Earth models of realistic complexity. The synthetic data results indicate that
low-wavenumber components in wavespeed converge slowly when only reflection data were
inverted. This was not expected considering that traveltime curves of reflections should
rapidly resolve the low wavenumbers. However, by analyzing an acoustic equivalent of the
algorithm in detail, I have identified reflection-tomography-like terms and migration-like
terms in the inversion formulas. I prove that the low wavenumbers are resolved by the
tomography-like terms and suggest how to get an even rate of convergence of the high

and low wavenumbers. I conclude that my iterative elastic inversion formulas obtain all
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wavenumbers of the compressional and shear wavespeeds that are resolvable separately by
migration and tomography.

I propose that the main topics for future research in seismic wavefield inversion are:
how to eliminate the need for an initial model, how to model seismic waves more accurately,

how to resolve additional Earth properties, and how to allow for non-Gaussian distributed
noise and Earth properties.
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Preface

Finally, both the theory and computer power make it feasible to throw away ad hoc
methods and partial solutions. Seismic observations can be fed into computers and Earth

models will pop out. This goal is on the verge of being realized! Read on.
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