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Maximum likelihood estimation of
residual wavelets

Clement Kostov

ABSTRACT

The method for maximum likelihood estimation of residual wavelets, presented
in the SEP-50 report, is further elaborated in two aspects: (1) comparison between
two measures of estimation errors, the variance and the bias, provides guidelines for
the number of data to be used in the estimation, (2) estimation of residual wavelets
from seismic data motivate the the use of models for statistically dependent input
series.

INTRODUCTION

A method for blind deconvolution of residual wavelets was presented in the last
SEP report (Kostov and Rocca, 1896). The method is an approximate maximum likeli-
hood estimation of a small wavelet.

Blind deconvolution makes no assumptions about the phase of the wavelet. To
recover the full wavelet, blind deconvolution methods (Wiggins, 1978, Bellini and Roccea,
1985, Walden, 1985) rely on a model for the probability distribution function (pdf) of the
input sequence and track the changes in the pdf as a function of the wavelet.

The estimation errors in blind deconvolution can be broadly classified in two types
— errors resulting from the random fluctuations in the input sequence, and errors arising
from discrepancies between the data and the model.

The variance of the estimates resulting from random fluctuations of the input
sequence 1s analyzed by deriving explicit expressions for the estimator and for the vari-
ance of the estimator as a function of the pdf of the input sequence (reflectivity), of the

amount of data available, and of the constraints on the wavelet (Rocca and Kostov,
1987).

The sensitivity of the estimated wavelet to errors in the model — wrong assumption
of statistical independence, or error in the parameters of the pdf of the input sequence —
are discussed in the present paper.
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Kostov 236 Residual wavelet estimation

DERIVATION OF THE ESTIMATOR

Outline

The likelihood function chosen for the estimation of the wavelet is the pdf of the
wavelet conditional to the data. First, expressions for this likelihood function and for its
gradient are derived. Then an estimator of the wavelet is defined as the product of a
galn matrix times the gradient vector. Maximum likelihood estimator are asymptotically
unbiased and minimum variance (Rosenblatt,1985). This property is used to character-
ize estimators of the wavelet and to obtain explicit expressions for the estimator and for
its variance in the case of generalized Gaussian input sequences.

Notations

The convolutional model is
Yy=2z2 +arw =z+xE+a), (1)

where 2 is the input sequence of length N (reflectivity), ¥ is the output sequence of
length N (data), and § + @ is a "deltalike” wavelet . The wavelet § is the initial guess
for the wavelet and the wavelet a is the unknown residual wavelet. In the sequel, we
always assume ay = 0.

The likelihood function and its gradient

Applying Bayes theorem, the likelihood function Pa (e |y ), which is also the pdf
of the wavelet given the data, is related to the pdf of the data given the wavelet

py(¥]a)p,(a)
py (¥)
An alternative expression of the likelihood function (Kostov and Rocca, 1987),

which depends on the pdf model p, of the reflectivity sequence z , rather than on the
unknown pdf Py (Y] @) of the data ¥ , is given by

p,(U-axy | a)
p,(¥)

The components 7y, of the gradient N 7¥(¥ ) of the likelihood function defined in (6)
are obtained by a Taylor expansion of the likelihood function (Kostov and Rocca, 1987),

1 N Jp, M

= Yy, .y , for |k | < —. 4

pela |¥)= (2)

PQ(Q Iﬂ)=

(3)

Tk

For iid input sequences the components of the gradient simplify further to

1 N op! M
N = 7\,—;:31 pp (i )yi x , for |k | < DR (5)

where p (2 ) is a one-dimensional pdf function.
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The gain matrix for an unbiased estimator

The estimator 4 of the convolutional wavelet @ is written a priori as
a =G y), (6)
where the gain matrix G is (M +1)X (M +1) and the vectors & and 7 are (M +1).

The gain matrix G is obtained by requiring that the estimator & be unbiased, that

is £ (a)= E (&) The term E (@) can be related to E (@ ) by linearizing equation (6)
with respect to a

E(d)=GE(¥)) = GE (Az + ax)) (7)

=G[EQz)+EQ (2))]E(e)
The expression of the (M +1)X (M +1) matrix 7y’ (z ) is given in Appendix A.

The above equations (7) are compatible with the unbiasedness condition if and
only if

G E(z) =0 and (8a)
[I-G E[Y (z)]]E(a) =0 (8b)

When the vector E (@) is arbitrary, i.e. when no prior information on the
coefficients is available, equation (11b) implies

GEN () =1

Gain matrix and estimator for independent generalized Gaussian variables

For a generalized Gaussian input sequence, it is shown in Appendix A that
E(z) =-6 , and (9)
ElY ()] =t()l +1I',

where I' is the matrix with entries equal to one along the secondary diagonal and
entries equal to zero elsewhere.

The function ¢ («) in equation (9) depends on the shape parameter a characteriz-
ing the pdf of the input sequence; t (&) is plotted in Figure 1 and its analytical expres-
sion Is given in Appendix B. The function ¢ («) attains its minimum value of 1 when
the shape parameter is equal to 2, i.e. for a Gaussian distribution, and increases mono-
tonically as the distribution moves away from the Gaussian.

The gain matrix G is the inverse of the matrix £ [1' (1 )], given as a function of
t (o) in equation (9),
G = ————[t(a) - I']. (10)
t(a)? -1

The gain matrix is defined for all distributions except the Gaussian, for which the esti-
mation of the wavelet is in general not possible. The expression for the estimator of the

wavelet a follows from equation (10)

A 1

a = t—(—a)2——f [t ()M —1" | 2(¥). (11)
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FIG. 1. Function ¢ () used in the definitions of the gain factors for different types of
wavelets. Notice that the minimum value of the function t (a) is attained for o = 2,
t(2) = 1.

Variance of the estimator

The estimator @ is defined in equation (11) as a function of the data vector ¥ . To
analyze theoretically the variance of the estimator, Y(¥ ) is approximated to order zero in
a as Yz ) The expression of the estimator becomes

1
i = —— [t(a) -I'" | ¥z). 12
o e - et 12
The (M +1)X(M +1) covariance matrix of the estimator ¥ is defined as
T=E[d&-a)(@ -a)T] (13)

To first order in the coeflicients of the wavelet a , the covariance matrix of the unbiased
estimator 4 ,

o 1t -1 ]
N t(a)?-1

is obtained by combining equations (13) and (14) and by using the following identity for

the covariance matrix of the gradient vector derived in Appendix B,

E [z )z)T] = (@ +1I' .

: (14)

N
1 . . .
The factor N implies that the covariance tends to zero as the number of data goes

to infinity. The variance of the estimator tends toward infinity as the distribution tends
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toward the Gaussian (the covariance matrix is proportional to the gain factor of the esti-
mator 4 , equation (11)).

PRIOR INFORMATION

Non-uniqueness of the unbiased estimator

Prior information about the wavelet, expressed as linear constraints on the
wavelet’s coefficients, restricts the wavelet ¢ and its estimate 4 to a subspace F' of the
space spanned by the gradient vector . The conditions defining the gain matrix G
(equations (7)) become less strict, and there might be several possible choices for gain
matrices and correspondingly for the unbiased estimators; causal wavelets for instance
have coeflicients equal to zero at negative time lags, and therefore the corresponding
entries of the gain matrix are arbitrary.

Ambiguities in the choice of an estimator can be resolved by choosing an unbiased
minimum variance estimator compatible with the constraints (Rocca and Kostov, 1987).
The equations defining unbiased, minimum variance estimators are derived below for the
case of linear constraints.

Linear constraints: examples

® Even wavelets

Even wavelets are defined by % independent parameters and % independent

linear relations, @, = a_;,forl < k S%

® Odd wavelets
Odd wavelets are defined by % independent parameters. The M— relations among

the wavelets coefficients are a = —a_y .
® Causal wavelets

Causal wavelets are such that ¢ = O for & <0. The % coefficients for positive

lags are arbitrary.

® Residual wavelets of known direction
The direction A of the residual wavelet is known; only a scale factor remains to be
estimated. For instance, to estimate a small constant phase shift, the residual
wavelet could be specified as proportional to the time-domain representation of the
Hilbert transform (Appendix C).

Linear constraints: general case

In each of preceding cases the prior constraint on the wavelet’s type was expressed
as a system of linear equations, L @ == 0, satisfied by the wavelets coefficients. More
conveniently, the estimator and the variance of that estimator are expressed in terms of
the projection onto the solution space of the linear system La = 0. Let P denote this
projection operator. When L itself is a projection operator, that is L2 = L, the
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relation between P and L’ is simply P =1 — L. To define an even wavelet, an

I -1
2

odd part of an even wavelet be zero.

operator I, equal to , could be used. The equation L @ = 0O requires that the

Table 1 summarizes the definitions of different wavelet’s types in terms of the
operators L and P, and lists for each type of wavelet the number of independent coor-
dinates that need to be estimated.

Table 1
Prior information
type of wavelet L P=1-1 number of
parameters
arbitrary 0 yi M
1-I I+ M
even el
2 2 2
7 — 77
" T+1 11 M
2 2 2
RN
cat 00 01 2

The unbiased minimum variance estimator

The a priori expression for the estimator is now 4 = PG YY), where P is the
projection onto the space F' spanned by the gradient vector. The unbiasedness condi-

tion should hold only in the subspace F', and therefore equation (10) should be projected
onto F

Pl -GE(Y (2))P =0, (15)

We solve for a gain matrix G written a priori as G = pI + ¢I’ , because the inverse
of E(Y (z)) is a linear combination of I and I' (equation (10)). The coefficients p
and ¢ are the unknowns.

After substitution of G into equation (15), the unbiasedness condition is obtained
in terms of p and ¢ :

(pt(a) + ¢ -1)P + (gt (a) + p)PI' P = 0. (16)

When the matrices P and PI' P are linearly dependent, equation (16) provides
only one relation for the two unknowns p and ¢ . In that case the pair (p ,q ) which
minimizes the variance of the estimator subject to the unbiasedness constraint (16) is
chosen. The covariance matrix of the estimator projected onto the the subspace F' is

given by
T = PGE (T )GP =

=[t(@)P*+ ¢ +2pq]P + [p%+ ¢% + 2t (a)pq|PI' P

The covariance matrix is proportional to P. The proportionality factor f (p ,q ,t ()
measures the variance of the estimator; it is a quadratic form in the coefficients p and
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¢ , and depends also on the input pdf model through the function t (a). To determine

pand ¢, f (p,q,t(a )) is minimized subject to the linear constraint between p and
q given by the unbiasedness condition (16).

For linearly independent matrices P and PI' P the coefficients of these matrices
in equation (16) are set to zero and the same gain factors for the estimation of arbitrary
wavelets as in equation (11) are obtained.

Estimates and their variances for particular wavelet types

For even wavelets, odd wavelets, causal wavelets and wavelets of known direction
the operators P and PI' P are linearly dependent. The method described in the previ-
ous section is applied for each wavelet type and the operator PI’ P, the gain matrix,
the estimator and the covariance matrix of the estimator are determlned The results
are summarized in Table 2

Table 2
type of estimator covariance
wavelet f_’ ﬂl P a Z_
| t (a)[ I 1t ()1
arbitrary y I —NY -
t(a)? -1 @) N t(a)?-1
e L +TI 1+r [+I' oy | L L+
2 2 2(t (@) + 1)~ N 2(t(a) + 1)
I-r I-r I-r 1 I -1
dd = = == == — =
° 2 2 2@ DY) | Na@ D)
0 0] 1 1 I
I 0 —
o ¢ 0 e N

Estimation of a constant phase-shift

The wavelet @, corresponding to a constant phase-shift, could be estimated in one
of the two two following methods:
(1) as the projection of @ along the known odd direction b (h is the discrete Hilbert
transform and H is the projection onto A , defined in Appendix C)

. HAy)

T W@y

(2) as an odd wavelet (since h is odd), given by

g — 28I ay)

4 2(t(a) - 1)

In both cases, the estimator of the constant phase shift is 6 =

with variance:

|=~ |I=

— =

2
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T An T
h=p@y=L EW R _ 1 ] g
var (0) (67) X 2N (t (a) - 1) Mzéth_z 1)
=1

Comparison of the variances

Figures 2a and 2b show the variances for four types of wavelets — arbitrary, odd,
causal, and even — as a function of the shape parameter o of the generalized Gaussian
pdf’s. The plots distinguish between super-Gaussian distributions for which & < 2 and
sub-Gaussian distributions for which a > 2, because the variances for arbitrary and
odd wavelets tend to infinity as the distribution tends toward the Gaussian.

The variance for the estimate of an arbitrary wavelet, when no prior information is
available, is highest. The curves for the estimates of the odd and even parts of a
wavelet, are different by several orders of magnitude. The variance on the odd part is
practically identical to the total variance.

For any given type of wavelet, the variance is highest (possibly infinite) for the
Gaussian distribution. The variances remain finite for Gaussian pdf only when the phase
of the full ”deltalike” wavelet is known a priori as for even or causal residual wavelets.

a) Variances: super—Gaussian case

3 |
2
2
S 1]
2]
1
ED 0 causa
-1 even
-2
8 1 1.2 1.4 1.6 1.8
pdf a
b) Variances: sub—Gaussian case
4
3|
© 2|
@
Q
e
Q)
o causal
0]
T
-1 even
2.2 2.6 3 3.4 3.8 4.2

pdf «
FIG. 2. Theoretical variances of the estimated wavelets represented on a logarithmic
scale as function of the input pdf and prior information. The amount of data and the
scale of the residual wavelet are fixed. a) super-Gaussian case. b) sub-Gaussian case.
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Sensitivity to the pdf model

What if the shape parameter & of the input sequence z is different from the
parameter o assumed for the estimation?

The gain matrix G is no longer the inverse of the matrix E [¥ (2 )] and therefore
the unbiasedness condition, equation (8b), is no longer satisfied.

From equation (9), the matrix E [ (2 )] is equal to
EY @) =t@ +I' =t(a)ll +I' +(At), (18)
where (At) = t(a) - t (o).

The bias of the estimator can be derived from equation (7),
E(@)—E<a>=E<g){1 +(At)G }

Thus, an error in the shape parameter of the input sequence leads to an error on
the gain matrix and to a biased estimator. The bias is proportional to the product of
two terms — one related to the pdf model,

t(a)? -1
and the other, £ (a ), related to the magnitude of the residual wavelet. The factor in
the bias which depends on the pdf model is plotted in Figure 3.

(At)G =

The comparison between the bias and the variance of the estimator sets some prac-
tical guidelines for the estimation of the wavelet. The variance of the estimator, due to

. : 1 .
the random fluctuations of the input sequence, decreases as N where N is the number

of data. On the other hand, increasing the number of data beyond the number for which
the variance becomes smaller than the bias term is not going to improve the accuracy of
the estimation. This limit number is obtained from equations (14) and (19),

1
N < — 20
For instance, when the shape parameter of the input sequence is close to o = 1, and the

magnitude of the coeflicients of the residual wavelet is about 1095, equation (20), pro-
vides a relation N . X (Aa) < 30.

Numerical examples: estimation of constant phase-shifts

The examples presented in this section illustrate the estimation of small constant
phase shifts, both from simulated and from seismic data.

The model and the estimation of small phase shifts are described first using simu-
lated data. Constant phase shifts, from —10° to +10° were applied to a time series of
14400 random numbers, drawn from a generalized Gaussian pdf with shape parameter
a = 1.2. For each constant phase shift, a residual wavelet was estimated, and a con-
stant phase-shift correction was computed from the estimated wavelet according to equa-
tion (17). The results are shown in Figure 4; both the sign and the amplitude of the
correction factor are well estimated in this range of phase-shifts and make it possible to
recover the input sequence by iterating the residual wavelet deconvolution.
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Bias factor as a function of pdf

pdf «

FIG. 3. The bias resulting from an error in the shape parameter of the pdf model is the
product of a factor (shown in the figure) which depends on the pdf only, times the mag-
nitude of the residual wavelet.
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FIG. 4. Phase corrections computed from the estimated residual wavelet for simulated
random numbers. The sign and the magnitude of the corrections are well estimated.
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Fig. 5: Light line: change of the
kurtosis of the original seismic

data as a function of phase-shift.
Heavy line: change of the kurtosis
of the seismic data as a function of
phase-shift after after suppression
of long period multiples. Removal of
long period multiples increases the
non-Gaussianity if the data and the
sensitivity of the kurtosis to phase
shifts.

Fig. 6: The residual wavelet (heavy line)
computed from seismic data, after removal
of long period multiples and 90 degrees
phase shift, is nearly symmetric. Thus, the
residual wavelet attempts to correct mainly
for the non-whiteness of the data.

The variance of the estimates (light line)

is high and strongly dependent on the
amplitude of the wavelet’s coefficients.

Fig. 7. A window of data after three
processes: (a) original data, after

normal moveout and removal of long
period multiples.

(b) same data as in a), after 90 degrees
phase rotation.

(c) same data as in b), after applying the
correction computed from the residual
wavelet.
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A similar experiment — estimation of small constant phase-shifts — was performed
with seismic data. The data are a window of 24 traces, each 600 samples long, from a
marine shot profile (#27, Yilmaz and Cuomro, 1983). The long period multiples are
suppressed in order to balance the spectrum and increase the non-Gaussianity of the
data, thus sharpening changes in the pdf with phase-shift (Figure 5). Figure 5 shows
that the pdf varies smoothly with phase-shift, reaching an extremum for a phase-shift of
90°, for which it is the farthest away from the Gaussian pdf.

The coefficients of the residual wavelet estimated from the 90° phase-shifted data
are plotted in Figure 6. The wavelet is nearly symmetric, thus implying that the main
correction is for the color of the amplitude spectrum. The variance of the coefficients is
also high and depends on the amplitude of the coefficients.

Figure 7 shows the original data (panel 7a), the data after a phase-shift of 90°
(panel 7b), and the data after deconvolution with the residual wavelet (panel 7c¢). The
sharpness of the data increases from panel 7a to panel 7c, as the kurtosis (measure of the
pdf) increases from 4.2 for the original data (7a) , to 4.5 for the 90° phase-shifted
data (7b) and reaches 4.6 after three iterations of the residual wavelet deconvolution
(7¢).

Figure 8 demonstrates that the residual wavelet does not follow correctly changes
in the phase of the seismic data. Neither the sign, nor the amplitude of the estimated
phase are correct. This effect is expected, because the antisymmetric part of the wavelet
in Figure 6 is nearly zero. The residual wavelet attempts to correct for the main
discrepancy between the data and the model, which is the colored spectrum of the
seismic data. To obtain better results, the model for the estimation of the residual
wavelet should account for such a colored spectrum.

Phase corrections

(&
—

estimates
0
|

-10 -5

80 85 90 95 100
phase shift in degrees

FIG. 8. Phase corrections computed from the estimated residual wavelet for seismic
data. The sign and the magnitude of the phase-shifts are incorrectly estimated.
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THE GRADIENT FOR NON IID INPUT SEQUENCES

Overview

Models of reflectivity series that do not assume statistical independence fit better
the experimental data, according to a recent paper by Walden and Hosken (1985) and
other studies referenced in that paper.

The gradient of the likelihood function is derived in this section for an input
sequence modeled as a first order Markov process. Higher order Markov chains have
been used as models for the logarithm of impedance in the work of Godfrey, Muir and
Rocca (1980). For first-order Markov input sequences the gradient remains the cross-
correlation between a non-linear transform of the data sequence and the data, sequence
itself. For iid sequences the non-linear transform has ”zero memory” (Godfrey and
Rocca, 1981), while for dependent sequences the transform may depend on more than
one sample.

First order Markov processes
Given the following pdf model for the input sequence
N
pe(z) = T1p(z | 2_)
1 =1
the expression for the k% component of the gradient is of the form
1 N
Tk = N E U (yi+1’yi ’yi—l)yi—k .
t=1
As in the case of an iid input sequence the gradient is the cross-correlation of the data

sequence with a non-linear transform of the data sequence. The non-linear transform is
now a function of several variables

9 0

u (y Y ) = af’/, p (y, I yi—-l) ayl P (yi+1 | y,)
; 1Y 5 Y5
t+1091 90 -1 p (yi | yi—l) p (yi+1 | yi)

We give the particular expressions for the gradient in three cases:

a) independent input samples z;

Then, p (x; | ;1) = f (2;) and the components of the gradient are identical to the
components for iid input sequences derived in equation (5):

1 NS (y) M
V. = — —vy,; ;. for k<=
¢ N,‘§1 f (?/z') Lok | l -2

In this case the non-linear transform is a function of one variable only (”zero-memory
non-linearity”), equal to f ' (y, ).

b) independent increments 2; — x;

In that case, p(z; | 2;_) = [ (%; — z;_;) and the components of the gradient are
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_ _Li\’:[f' (¥ - v 1) B I (?/z'+1—?/z')] _
Tk Ni=1 f (y{ - ?/,'_1) f (yi - yi—l) Vi
. _1_ N f’ (yi - yi—l)

- Nz'zzzl f (yi - yi—l) [yi—k - yi—-l—k]’

The gradient in this case is equal to the gradient of the iid sequence of increments. The
non linear function depends on three consecutive samples and is equal to:

S (v - Yi 1) B f! (?/i+1‘yi)
i —vi) (v —via)

¢) a combination of the previous cases, p (z; | z;_1) = af (z;) + fg (2, — ;1)

(4 (yz’+15yi 7yz'_1)yi—k =

The gradient and the non linear function for this case are also linear combinations of the
gradients and of the non linear functions computed in a) and b). A model of this kind
could be used for a process with a few large transition events (occurring with probability
af (z;) ) and small variations between transitions (occurring with probability

By ("Tz' -y ~1))'

CONCLUSION

Two measures of errors in the estimation of residual wavelets, the variance and the
bias of the estimator, were discussed. The variance measures the sensitivity of the esti-
mator to random fluctuations in the input sequence, while errors in the model for input
the pdf sequence introduce bias. Comparison of the two error measurements provides a
bound on the number of data to be used for the estimation of the residual wavelet.

Computations of residual wavelets from seismic data point out the importance of
the color of the spectrum for the estimation. Suggestions for modifying the estimator for
correlated data modeled as a Markov chain are given.
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APPENDIX A
Matrix E (7 (z))
The (M -|—1)><(M +1) matrix 1(&) is defined through the relation
A¥)=2z)+ 2 (z)a

A Taylor expansion of the ki component of the vector (¥ ) leads to:

}i)——‘z ( )yi—k =

| N I=M/2 / m=M /2
= WZ [u (.’L‘,) + E QT u (‘ri )] [xi—k + Z O Ty | =
=1 l=-M/2 m=-~M /2
1 N |=M/2 ,
= (z)+ WZ z %/2“1 @iz u’ () + 24 u(s;)],
t =1/ =-—

'
. z
where the function u (z ) denotes u—)
p(z)
From the above equations, we derive the expression for the entry in row k and
column [ of the matrix ¥ (z):

2 @)y = A S mamn @)+ S ()
x—l t =1
The samples z; are statistically independent, therefore
EY @)y, =0, for k#l and k +1 0,
ElY )y, =EX)E(' (X)) for k =1, and
EY () =EXu(X)) for £k +1 =0.

For a random variable X with a generalized Gaussian pdf, the expected values

E (XQ) E (Xu (X)) and E(u' (X)) were computed in Kostov and Rocca, 1986, and
the expression for the matrix F (_"_7” (g ) is:

E( (2))=t(a) +1 .

Matrix E(%z))
The k=™ component of the gradient; vector (z ) is
AT 2 ( Z;
z =1

The expected value E (v, (2 )) is zero for k& == O because the samples z; are indepen-
dent. For £ = 0, and for a random variable X with a generalized Gaussian pdf
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E (vo(z)) = E (Xu (X)) = -6, as shown in Kostov and Rocca, 1986.

Matrix E (17T (2))
The entry for row £ and column [ is:
1

N
E[ﬂT(Q.)k,l] = _]W i 1u (xz')xi—ku(xj)xj—l'
i,j=

The samples x; are statistically independent, therefore only terms such that
t = jand k = 1[,ort1—-k =j and j—| =1 contribute to a non-zero mean value,

EMT (@) ]=0 for k#l and k + I 40,
BT (@) 1] = 5B (w(X)PE(X?) for k =1, and

EmT(z) ] = %{E(Xu (X)) for k +1 =o.

For a generalized Gaussian random variable X,
BT @) = 5t (@ +1').
APPENDIX B

Expression for the gain function of the estimator

The pdf of a generalized Gaussian random variable with shape parameter o and
scale parameter [ is

o

1 Fl=1 ]

pla)=—q5—c 7
Qﬂr(;)

The logarithmic derivative of p (z ) is denoted by u (z),

p' (z)
p(e)
and the gain function of the estimator is,

tla) =E(u' XDEXY)=E(-adX)|X |*T-ala-1)| X |*?) =

u(z)= = —osign(z ) |z |~ L

F(;) ala - 1)
r3(§) sin(%)
APPENDIX C

A small phase shift § can be applied to an input sequence z by convolving z with
the wavelet 6 + 0h, where the antisymmetric wavelet & is the discrete time domain
representation of the Hilbert transform (Claerbout, 1976). A wavelet ¢ has the same
direction as h provided that [l - ﬂ]g_ = 0, where the entries of the matrix H are

) M/2
i =_£L,for|lc|,lllSMandlﬁV:?i“’
k)l NE 2 '

l__. 1 =1

SEP-51



