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Some nonlinear optimization methods

Jos van Trier

ABSTRACT

Although most nonlinear optimization methods use linear approximations to find
search directions in the model space, their search for the minimum is nonlinear: the
nonlinear objective function is recalculated at each step in the search. These nonlinear
methods can be divided in three classes: methods that only use function evaluations,
methods that also use first derivatives or gradients, and methods that require function,
gradient and second derivative information. I tested several methods on Rosenbrock’s
function, a test function often used in optimization literature.

INTRODUCTION

My main reason for testing optimization methods is to find out how well suited they
are for problems with a small set of parameters. Therefore I use Rosenbrock’s function, a
function of only two parameters, to test each method.

I will not describe any new theory in this paper; I will just give a brief summary of each

method, without deriving the mathematics. A extensive survey of optimization methods
can be found in Gill et al (1981).

OPTIMIZATION

Linear vs. Nonlinear

Traditionally, inverse problems in geophysics are formulated in terms of a linear rela-
tionship between model and data:

Gm = d, (1)

where m is the model vector, d the data vector and G a matrix. The conjugate-gradient
method was originally designed to solve this problem, because existing methods for inverting
the matrix G were expensive for many model parameters. Its main advantage over previous
methods, though, is that it is an iterative method. In each iteration, the squared difference
between data d and modeled data G m is minimized. Although the exact solution can be
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found after n iterations (with n the number of model parameters), the error is often small
enough to end the search after only a few iterations.

This linear conjugate-gradient method is described in Claerbout’s tutorial on conjugate
gradients (Claerbout (1985)). The conjugate gradient method can also be used in cases
when there is no linear relationship between model and data, i.e., when it is impossible to
construct the matrix G. Although in each iteration linear approximations to the gradient

are used, the search for the minimum is nonlinear: the nonlinear function is recalculated at
each step in the search.

Several other nonlinear methods use this approach. In the next section section I will
discuss some of them. All the methods discussed here are so-called direction methods; 1
will not consider random-search methods, such as the Monte Carlo method.

Nonlinear Optimization

Optimization methods find the minimum of a objective function F. If we take some
particular point P as the origin of the coordinate system with coordinates x, then the
function can be approximated by its Taylor series

oF 1 a*F
F = F(P — x; — — T2 e
(x) (F) + Z‘:az.- g ’Z;ax,-az,- A
1
A c—b-x+§x-A-x, (2)
where X is the n-dimensional vector (z1,z2,. .. ,x,,)T, A is the second derivative or Hessian

matrix, b is the vector opposite to the gradient vector and ¢ is a constant. Many optimiza-
tion methods use this approximation; they differ in how they calculate the gradient vector
and/or the Hessian matrix, and using this distinction, we can divide them into three classes:

1. methods that require function, gradient and second derivative information;
2. methods that require gradient information or first derivatives;

3. search methods that use function evaluations only.

The different sorts of optimization are listed here in reverse order of simplicity. In terms of
theory however, the first method is easier to explain than the last one, and therefore the
different methods are discussed in this order in the following sections.

Second-derivative optimization

Using equation (2), we can find the minimum X,, of F by setting its derivative with
respect to x to zero:

Xn = A1 . b (3)

If the matrix A is known at every point, the problem reduces to the linear problem discussed
in the previous section, and a linear conjugate-gradient method can be used to solve for
Xm. For quadratic functions, x,, will be the true minimum; for non-quadratic functions,
the matrix A can be recalculated at x,,, and the procedure is repeated.
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If the matrix A is not known, it is possible to build up iteratively A1, if first derivatives

of the function F can be calculated at arbitrary points. Quasi-Newton methods use this
approach.

First-derivative optimization: conjugate gradients

At each iteration i, the conjugate-gradient method finds the minimum in a particular

search direction p;. The search direction p; is a linear combination of the gradient vector
gi and the previous search direction:

Pi = —8 t BiPpi-1 (4)

Pi is chosen such that the search directions are conjugate (i.e., p; - A - p; = O for all
i £ 5):

g = 88 _ (8i—gi1) & (5)

8i-1 * 8i-1 gi-1 * 8i-1
Note that the matrix A need not to be known to calculate 8;. After n iterations, we have
done n searches in conjugate directions, and, if the function is quadratic, the minimum is
located. The search is started with a steepest descent direction: po = —go. The first
expression in equation (5) is used by Fletcher and Reeves (1964), the second by Polak and
Ribiere (see Polak (1971)). Although both definitions are equivalent for quadratic functions,
the latter is reputed to be better when more than n iterations are done (Press et al (1986)).

The gradients can be calculated in two ways: analytically by using exact expressions

for the gradient of F', and empirically by using a finite difference approximation to the
gradient.

Non-derivative optimization

An optimization method that uses only function values to locate the minimum is de-
scribed by Powell (1964). Powell’s algorithm iteratively builds up conjugate directions.
Each iteration consists of searches down n linearly independent directions ¢i,&s,...,&,.
These directions are initially chosen to be the coordinate directions. At the end of each
iteration, one direction is replaced by new one. After n iterations, all the directions are
conjugate, and, again if the function is quadratic, the minimum is located. In summary, an

iteration of the basic algorithm is as follows (we start from xg, the current approximation
to the minimum):

a. forr=1,2,...,n, find the minimum x, in direction £,, and replace x,_; by x,;
b. for r=1,2,...,n, replace & by &,_y;
c. replace &, by (x,, — Xo) and %o by the minimum in this direction.

This basic procedure can be modified for cases in which nearly dependent directions are
chosen. This is especially important when the objective function has long, twisty valleys.

RESULTS

The problem that I want to optimize (Van Trier (1987)), is formulated such that no
information on the derivatives of the objective function is available. I will therefore concen-
trate on non-derivative and gradient methods, where gradients can be calculated by finite
differences.
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The methods are tested on Rosenbrock’s function, a function that is frequently used in
optimization text books and articles. The function is a function of two variables:

F(z1,22) = 100 (z2 — 22)? + (1 — z;)?, (6)

and has the desirable (at least for test cases) feature that its minimum (at (1,1)) lies in
a narrow, banana-shaped valley. In all the examples, we start the search from the point
(-1.2,1.0), another tradition in optimization literature.

To illustrate the problems involved with a narrow valley, we start with a steepest descent
method. This method, which was not mentioned before, is a simple search method that
uses the gradient as search direction in each iteration. The result is shown in Figure 1.
The search algorithm does a line search with increasing step length. Once the minimum
is bracketed, it is located by a quadratic interpolation. The parameters for the search
algorithm are kept the same for the different methods discussed here.

Convergence of the steepest descent method is poor: at each search the minimum is
“overshot,” resulting in a zig-zag pattern with slowly decreasing width (Figure 2). The
objective function hardly changes any more after 100 iterations, and the optimization is
stopped.

tn
FIG. 1. Steepest descent. The
search was stopped after 100 iter-
ations. ® o
o

The conjugate-gradient method performs better (Figure 3); the search directions are
chosen to be almost parallel to the center of the valley. The method still requires a consid-
erable number of iterations (25) to converge, because each time after n iterations, a steepest
descent direction is used to start the next round of n iterations. It is possible to use the
last search direction after n iterations instead of a steepest descent one, although search
directions are then no longer conjugate. Figure 4 displays the result of this version of the
conjugate-gradient method. The minimum is almost located after 19 iterations, but then
the optimization overshoots the minimum, because the old gradient direction is used in the
next iteration. It returns to the minimum however, and after 25 iterations it has found it.
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FIG. 2. Part of Figure 1 is plotted
on a larger scale. The plot clearly
shows the zig-zag pattern typical
of steepest descent methods.

FIG. 3. Fletcher-Reeves conju-
gate-gradient method after 25 it-
erations.  Analytic expressions
for the gradient are used in the
algorithm, and each iteration is
started with a steepest descent di-
rection.
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FIG. 4. Fletcher-Reeves con-
jugate-gradient algorithm which
uses the previous search direc-
tion at the start of each iteration.
Again the gradient is calculated
analytically, and 25 iterations are
done. Note the different scale of
the plot.

FIG. 5. Fletcher-Reeves conju-
gate-gradient with finite differ-
ence approximations for the gra-
dient. As in Figure 4 the opti-
mization was stopped after 25 it-
erations.
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FIG. 6. Polak-Ribiere conju- |
gate gradient algorithm with fi- o
nite difference approximations for
the gradients, and using the pre-
vious search direction in the next e}
iteration. Only 12 iterations are

needed to find the minimum.

Figure 5 shows the result of the conjugate-gradient method which uses finite difference
approximations for the gradient. The total number of iterations is again 25. In the first
lterations the convergence is about the same as when exact expressions for the gradient are
used (Figure 4). For later iterations the convergence of the finite difference method gets
worse than that of the exact gradient method, because the finite difference interval gets too
large and thus the approximation too crude.

I also tested the Polak-Ribiere version of the conjugate-gradient method (Figure 6). The
optimization converged after only 12 iterations.

Finally, the search path of the non-derivative method is shown in Figure 7. This method
has the fastest convergence: 11 iterations were required to reach the minimum. It should
be noted however, that the method needs about n times more function evaluations than the
conjugate-gradient method, if gradients can be calculated theoretically. Gradients calcu-
lated by finite differences, though, need n function evaluations as well. Conjugate-gradient
methods are then as expensive as Powell’s method.

CONCLUSIONS

Although no firm conclusions can be drawn from tests on a two-parameter function, the
non-derivative method of Powell seems to be well suited for small parameter problems. The
method is simple in the sense that it does not require any derivative information. If gradient
information is available, the Polak-Ribiere method is preferred because it is cheaper than
Powell’s method and it has the same convergence. Care should be taken with calculating
the gradient by finite differences: the convergence of the optimization strongly depends on
the choice of the finite difference interval. For large parameter problems, the conjugate-
gradient method is likely to be more efficient: the search in all the parameter directions at
each iteration of Powell’s method can be costly when some of these directions are not well
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