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Constrained inversion for finite-difference
operators

Joe Dellinger

ABSTRACT

In SEP-50 I presented an inversion algorithm for finding accurate finite-difference
operators. Each element of the finite-difference operator was a free parameter in the
inversion. The resulting objective function was unsuitable for conjugate gradient tech-
niques. The algorithm can be constrained easily by constructing the operators as
weighted sums over a set of basis functions. The inversion determines the weights
of the basis functions, and not the actual elements of the operator. This space of basis
function weights is found to be much more suitable for the use of conjugate gradient
techniques than was the descent space of the original problem.

REVIEW OF INVERSION

Conjugate gradients is a general technique for solving matrix equations of the form
Az =),

where A is a known matrix, b is a known vector, and z is the vector to be solved (read

inverted) for. Like all optimization techniques, conjugate-gradients attempts to minimize
the norm of the error

Az — b = residuals.

The conjugate-gradients method used here does not need to know A explicitly, but only
needs to have available a subroutine which calculates Az given z and another which calcu-
lates A’b given b. Thus we can easily extend this linear technique to nonlinear problems.
Starting from a nonlinear equation A(z) = b which we wish to solve, we linearize about
some point (z,b) for small perturbations §z:

A(bz; z,b) = 6b. (1)

A is a linear function of §z, but a nonlinear function of (z,b). For each fixed (z,b), there is
an exact linear transpose of A(6z;z,b), which defines

A'(6b;z,b) = 6%. (2)
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Note that 6% does not have the same units as §z. We can now use the same conjugate-
gradient algorithm as before. All we need are two subroutines, one that returns A(bz;z,b)
and another that returns A*(6b;z,b). If all goes well, conjugate-gradients will find the
globally best solution of A(z) — b~ 0.

REVIEW OF SEP-50

In SEP-50, Peter Mora and I showed how to use standard inversion techniques to find
good finite-difference operators. Consider the acoustic wave equation

P~ 9zzp = f, (3)
where p is the pressure field and f is the forcing function, both functions of space and
time. We can use finite differences to solve this equation for p(z,t) given f(z,t) and 9,,.
Here we will take the unusual step of considering f(z,t) to be constant, and 3., to be
the free variable. Given a forcing function f(z,t) and the ideal resulting wavefield p(z,1),
the technique of the preceding section can then be used to invert for the best possible
representation of 8, within the limits imposed by the discretization of the problem.

The advantage to this method is that the finite-difference operator d,, can be optimized
for a given irregular grid, boundary condition, or source wavelet, with no preconceptions as
to what sort of operator should be best. An representation of 3, is “best” if the wavefield
that results when it is used in the wavefield extrapolation operator differs by the minimum
possible amount from the desired “perfect” answer.

In SEP-50, the parameters of the inversion were the elements of the finite-difference
operator. Although this choice of parameters makes for the simplest theory and code, it
is not a very good choice. Most of the effort of the inversion gets wasted in re-discovering
such simple principles as “the sum of all the elements in the operator should be zero” or
“the operator should be symmetric”. Compared to the errors induced by violating these
general principles, the slight improvements made by getting exactly the right operator are
insignificant. Local minima abound, frustrating efforts to find the global solution.

The solution is to force some constraints upon the inversion, limiting the search to a
space of “reasonable” possibilities. Laws such as “the sum of all the elements in the operator
should be zero” should be worked into the algorithm from the beginning, leaving behind a
more tractable search space of lower dimension.

INVERSION WITH CONSTRAINTS

We will now rederive the inversion exactly as in the previous paper, but with the addi-
tional complexity of constraints. Instead of letting the individual elements of the operator
be the parameters, we will build up the operator out of a weighted sum of basis operators.
This restricts the search space. For example, if each of these basis operators has zero sum,
so must any linear combination of them.

Problem definition

Letting p and f be discrete, we can rewrite “d,;;” as a convolutional operator C. Equa-
tion 3 then becomes

pP—CH,p=f. (4)
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The subscript on the convolutional operator shows whether the convolution is over space or
time. The forward problem is to find the wavefield p given the finite-difference operator C
and the forcing function f. Our inverse problem is to find C given p and f. We constrain
C by constructing it as a linear combination of basis functions cp:

C = ZAncn. (5)

Our goal is to invert for the set of real coefficients {A,}, which will determine the finite-
difference second-derivative operator C.

Linearizing the problem

Equation 4 relates C' and p. We will invert this nonlinear equation by using conjugate-
gradient techniques on the linearized approximation of this equation. To construct the
linearized equation we perturb both the finite-difference second-derivative operator C' and
the wavefield p:

(B + 8p) — (C + 6C) *; (p+ 6p) = f. (6)
Expanding, discarding nonlinear terms, and reordering we obtain:
(f)—C*zp—f)+5ﬁ—C*15p=5C*zp. (7)

The parenthesized term is identically zero by equation 4 and so can be discarded. Defining

§f =6C*;p=[) 6Anco)*sp (8)
n
for notational convenience equation 6 can be rewritten as

§p— C %, 6p = 6f. (9)

This equation is our linearized forward problem corresponding to equation 1. It is a linear
equation giving &p as a function of the {6 A,} for a given “current search position” (C,p).

Note that equation 9 has just the same form as equation 4. Op is just the wavefield that
results when 6f is used as a forcing function. The same computer subroutine that solves

equation 4 for p can also be used to calculate §p in equation 9. Mathematically, if G is the
Green’s function such that

p(zr,t) = /da: G(z,,t;2,0) *¢ f(z,t) (10)

solves equation 4, then

5p(zy,t) = / dz G(z,t;z,0) % 6f(z, ) (11)

will solve equation 9. (G(z,,t;z,0) is the wavefield observed at z, at time ¢ due to a shot
having been fired at location z at time 0.) In practice we need never explicitly calculate

this Green’s function; using it in the mathematics represents a finite-difference calculation
on the computer.

We now know how to take our finite-difference modeling program and use it as the core
of the first required subroutine. The conjugate-gradients algorithm also requires the second
subroutine, which is the exact transpose of the first.
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The transpose

To find the transpose, we first find the kernel K of the linearized forward operator.
Integrating a function times this kernel is the continuous equivalent of multiplication of the
“matrix kernel” times the “function vector”.

Isolating the kernel K in a useful form requires a few simple manipulations. We begin
by substituting the definitions of §f and C into equation 9:

op(z,,t) = /dz G(z,,t;2,0) *¢ (p *, Z&An cn).
n
Expanding out the convolution over x using the new variable X, this becomes
= /d:z: G(z,,t;z,0) *t/dX p(z — X,t)Z&A,, cn(X).
n
Regrouping to pull out the §A,,, we get
=) 64, [/ / dr dX G(z,,t;z,0) * p(z — X,t)c,,(X)].
n
The term between the square brackets is the kernel K:

=" 64, K(z,,t;n) (12)

To construct the transpose, every variable in the kernel K which is susmmed or integrated
over must be changed to a free variable, and every free variable in K must be changed to

one that is summed or integrated over. This is the continuous equivalent of transposing a
matrix. The transpose is thus

§A4, = / / dz, dt p(zy, 1)K (g, t; n). (13)
We write 5;1,z to indicate that this does not have the same units as 5 An. (The difference
between the transpose and the inverse in some sense is that the inverse maps back to the

correct units while the transpose doesn’t.)

Calculating the transpose

This transpose must now be recast in terms of the original finite-difference equation.
Substituting K back in equation 13, we get:

§An = //dz, dt 5p(:z:,,t)//d:z: dX G(zr,t;2,0) * p(z — X, t)cn(X).

Rearranging to pull out the c,,, this becomes
= /dX c,,(X)///d:c, dt dz 6p(z,,t)G(z,,t; z,0) *; p(z — X, 1). (14)
Applying the identity [ dt h(t)[g(t)  f(t)] = [ dt f(~t)[g(t) * h(-1)],

54, = / dX ca(X) / / dt dz / dz, p(z — X,~t)G(zr,t;7,0) % bp(zy, —1).  (15)
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Define
YP(z,—t) = /da:, G(z,t; z,,0) % 6p(z,, —t). (16)

¥(z,t) is called the “back propagated residuals”: to calculate it we take the error in p, time

reverse it, use our handy wave-propagation subroutine yet again, and then time reverse the
output.

Equation 15 now becomes (using the reciprocity of G)
54, = / dX ca(X) / / dt dz p(z — X, —t)¢(z, —t)
- / dX ca(X) / / dt dz p(z — X, t)9(z,1). (17)

To evaluate this equation we take the back-propagated residuals and cross correlate them
with the wavefield. Note that the boundary conditions in time work out nicely; if the
wavefield extrapolation program runs from ¢t = 0 to t = T, p is zero before t = 0 by
causality, and the residuals are considered to be zero after t = T. From equation 16, 1 is
zero after ¢ = T by time-reversed causality and so when the two are integrated together
only the contribution from 0 to T is nonzero. The resulting operators are then dotted with
the basis functions to determine the coefficients {A,}.

SOME EXAMPLES

To test the method, we begin with the simplest possible example. The forcing function
consists of a spike centered on the z axis at zero time. This forcing function is shown in the
bottom right hand corner of Figure 3. The “exact” solution (the one the inversion is trying to
duplicate) is the wavefield that results when the simplest possible second derivative operator,
{1,-2,1}, is used. Only two basis functions are used, {1, —-2,1} and {1,0,-2,0,1}. The
top part of Figure 1 shows the results for four different inversion runs, starting from four
different initial positions. The contour plot shows how the norm of the residuals varies
as a function of the weights of the two basis functions. The contour lines are not at all
equally spaced; the norm of the residuals varies over several orders of magnitude. The
region without contours in the upper left hand corner corresponds to the unstable region of
the finite-difference operator, where the residuals are effectively infinity. For each inversion
run, a thick line shows the descent path followed. An arrow near the beginning of the path
shows the descent direction, and the final value is marked with a box.

For this forcing function, local minima were somewhat of a problem. The search con-
verged to the correct solution for only two of the four inversions. However, there is a fairly
broad and deep local minimum at the correct solution, and the two paths that fell into that
region converged on exactly the correct solution.

To see if a different forcing function could produce a better result, the one shown in the
bottom left hand corner of Figure 3 was used instead. This is simply Gaussian noise. Such
noise should have fewer spurious correlations which result in troublesome local minima.
The results are shown in the lower half of Figure 1. The norm of the residual as a function
of the basis function weights is now much better behaved, and a good minima was attained
for all four initial starting choices.

In Figure 2 the same two forcing functions are used as before, but the “exact” solution
was obtained by interpolating the forcing function onto a tenfold finer grid, calculating
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FIG. 1. Contour plots showing the search space for two different forcing functions and the
histories of four different inversions on each. The axis labels show the two different basis
functions, and the axes are labeled to show their weights at each point. The contour lines
are not evenly spaced; several orders of magnitude are spanned by the ones shown. The
finite-differencing scheme becomes unstable in the upper left hand region and as a result
the residuals there are infinite.
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FIG. 2. Contour plots showing the search space for two different forcing functions and the
histories of four different inversions on each. This figure differs from the previous one in
that the descent is trying to find a five-point operator that minimizes numerical dispersion.
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the wavefield there, and then subsampling back onto the original grid. This minimizes the
dispersion.

For this example again the Gaussian noise proves to be a better forcing function for
most of the search space. It does possess a “double minima”, but since the two minima are
nearly equally good it doesn’t really matter which the inversion falls into. For both forcing
functions, all four inversions converge onto very nearly the best five-point second derivative
operator calculated by Taylor’s series. This is not surprising, as the Taylor’s series is the
optimal low frequency solution.

CONCLUSIONS

Once constraints are added, this method seems to work well for the simple case where
the same operator is used over the entire grid. The next step is to allow there to be a
different operator at each position. This will allow the inversion to solve for operators that
work on irregular grids, and also operators to produce absorbing boundary conditions.
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FIG. 3. The forcing functions (bottom) and “exact” wavefields (top) used for the inversions
in Figure 2.

SEP-51



184

iiiiADpJNIDS Mou s| Abp asn }SaIADaY a8y "siayounid abny may b Aq pa||0Jju0d S| DIDP

PDO| 8y} SADPDMON “dwildauulp pup youn| o sdip Jpjnbas ay} ajou ‘Buiiom siay Aj|jDN}OD SioMm
o|doad usym s3109(}a1 Aj3sow J4pak 3sp| wod) ydoib sy] ‘uoou punoup Aopsen| uo dip dipys

oyl suip|dxs yolym ‘mou sbuluiow Apbpsen] uo s| aoubpudIUIDW Pa|NpPayds Alupinbay buijunoooo
wa}sAs 03 anp si sAbp [|D UO WyJ 1D 8¥ids dibys sy] :pauJadSIp 8q UDD S8.N}DAJ |DIOASS
/86 [4dy—youDW Joj si joid ulyy 8yl (9861 AINP—YoJDW Joy st joid HoIy} 8yl

"JYBIUPIA PUD ‘W9 ‘UOON 3JDW SO} [[DWS ¢ 3YL ‘WYY 3D SI

JDQ |DO[}JSA YODJ "333M JO BWI} JO UOIIOUNY D SD | —) X3AUO) JNO UO pDO| 3y} smoys jo|d siyj

yaay fo awyj

Ropuining  ADPLd  ARopsuny] Ropsaupay FAvpsang Aopuow

MOU PUD UdY] “‘DUWNDUDH

< N

©
abouany pooT



