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Three experimental modeling systems

Francis Muar

ABSTRACT

Three experimental dynamical models of computation, M1, M2 and M3,
supplement the lattice gas as alternatives to schemes based on PDE’s. These
models share a common structure with the lattice gas, and may solve simi-
lar problems; they differ substantially in how they represent data, and in the
sharply defined principle that controls collision rule selection.

M1, like the lattice gas, is a stochastic model. The model field is a set of
realizations of a random process. Field elements are binary, discretized in time,
space, and velocity, and are initially selected with probability depending on the
data value. Unlike the lattice gas, space and time sampling is not necessarily
fine, and the crude representation of the data in any one copy is compensated
by the number of copies. Evolution proceeds by translation and collision; the
latter, probabilistic and irreversible, based on an entropy principle.

The second model, M2, replaces M1’s set of binary fields with an ensemble-
average of such fields, and the field elements now range from zero to unity. At
each step and at each point, these averages are disassembled into their compo-
nent (M1-like) binary vectors, which are then replaced by constraint-equivalent
averages, and re-assembled.

The third model, M3, specializes M2 for applications where the initial con-
ditions are close to equilibrium; the problem is now linear, and the field consists
of vectors of real numbers with the collision process replaced by an idempotent
matrix operation on the velocity vectors.

While none of the three model systems is reversible, all have stable inverses.
M2 and M3 preserve most of the attractive features of the lattice gas, and may
generate very efficient and noise-free schemes, since they represent the data
economically and have no random element.
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INTRODUCTION

In a previous report (Muir,1986) I introduced the lattice gas and discussed
modifications for propagation through a heterogeneous medium. In this report |
discuss three related dynamical systems that have come out of my experimental
work, but first I review motivation, and take some time to discuss the structure of
the lattice gas, which is the jumping off point for my three model systems.

The lattice gas revisited

D’Humieres and his co-workers (1986), authors of one of the three seminal papers
in the field, have described the lattice gas thus:

Lattice gas models are discrete in space, time and velocity. They consist
of particles, which may be viewed as Boolean molecules, residing at the
sites of a regular lattice. Their discrete velocities are chosen such that
in unit time they can propagate to a neighboring site. There may be
several particles at a given site, but each velocity direction is subject
to an exclusion principle of (at most) single occupancy. The updating
of the lattice is done by alternating propagation and collision steps;
the latter take place at each individual site and are chosen to have
the same conservation laws as the true micro-world (particle number,
momentum,.. . ).

To this I would add that energy is also a conservable quantity, covered by mass
conservation if the particles travel with only one speed.

The principle attraction of the lattice gas as a dynamical model for computation
is the molecular analogy: particles move, collide, and move on, honoring whatever
conservative laws are prescribed by the problem. They form closed systems, are
not restricted to small departure from equilibrium, and are capable of modeling
complex behavior, such as turbulent flow, in a natural and bounded manner and
without recourse to explicit description.

From a computational point of view, the Boolean field variables, simple arith-
metic, and local and synchronized demands of the evolutionary process are well

suited to present day supercomputers, and particularly so to massively parallel
designs.

Less certain, but in the end perhaps more appealing, is the notion that lattice
gas and like systems may be more accessible to applied physicists than are finite
difference schemes, with possibilities of a straightforward calculus that would allow
direct model building without benefit of numerical analysts.

Symbols

For simple 2D regular lattices, particle configurations are simply illustrated by
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an ordered binary representation, in curly braces, of the state—ones where particles
are, and zeros where particles are not. It is useful to chose the state index as the
integer which shares the same binary representation. So that:

{1,0,1,0,1,0} is the (hexagonal lattice) configuration where, clockwise
from a preferred direction, the first, third and fifth positions are occupied
by particles, and the second, fourth, and sixth are not. The state index
would be 42.

Classic schemes

Three key papers in the lattice gas literature discuss what are now three classic
models. The first is HPP (Hardy, 1976), a 2D model based on a rectangular grid
and up to four particles at each grid point, each pointing towards one of the four
nearest neighbors. The collision rules for mass, momentum and energy conservation
are:

{1,0,1,0} into {0,1,0,1}
and
{0,1,0,1} into {1,0,1,0}

and all other states remain the same.

This scheme is fine for the diffusion equation (where the rules are modified to
eliminate the momentum constraint) but has viscosity anisotropy problems with
the wave equation and is quite unsuitable for Navier-Stokes problems where the
necessarily simple rules introduce a spurious line momentum conservation that is at
odds with the requirement that orthogonal velocity terms be allowed to convect the
momentum to produce eddy flow (Wolfram, 1986a, 1968b). This scheme was the
basis for the work in my last report, where the anisotropy problems were masked
by high noise level.

The second model is FHP (Frisch,1986); also 2D, it is a 6-particle, nearest-
neighbor scheme based on a hexagonal grid. This scheme was introduced to correct
the HPP deficiency, since the three-particle rules:

{1,0,1,0,1,0} into {0,1,0,1,0,1}

and vice versa break up the spurious constraint. In addition, this scheme has the
two-particle, zero-momentum rules:

{1,0,0,1,0,0} into {0,1,0,0,1,0} or {0,0,1,0,0,1}
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and the two other like exchanges. Both HPP and FHP can be projected on to the
line to give 1D schemes.

There is no simple 3D scheme that has the isotropy of the FHP, but, fortunately,
there is such a 4D structure, HLF (d’Humieres,1986), that can be projected down
on to the 3D rectangular lattice. This is a 24-particle scheme, based on the next-
nearest neighbors of a point on a rectangular 4D lattice.

Collision Rules

The 4- and 6-particle HPP and FHP models exist in, respectively, 16 and 64
different states, and rule design reduces to global examination. In contrast, the 24-
particle HLF scheme mentioned in the last section has over 16 million states, and
it should not be a surprise that no algorithmic prescription has been offered in the
literature. This size problem appears to call for some ingenuity, although a Monte
Carlo solution is not inevitable, since a 48 Megabyte look-up table is feasible.

Efficiency and precision

Questions have been raised on the efficiency of lattice gases for non-linear fluid-
dynamical problems, but there should be a greater concern for linear modeling,
where signal/thermal-noise is directly related to the distance of the model state from
equilibrium, and yet where linearity depends on a vanishingly small such distance.
For a fixed amount of computation there is an inescapable trade-off between thermal
noise and non-linearity. Lattice gases may be precisely repeatable in a formal sense,

but there is no escaping system noise and non-linearity distortion, whose attenuation
may be bought at high cost.

The new models

These concerns, and an interest in better understanding lattice gas behavior and
design, are the driving force behind the three models that form the content of this
paper.

M1 SCHEMES

Comparison with the lattice gas

As stated in the abstract, M1, like the lattice gas, is a stochastic model. Model
values are Boolean, and have no independent meaning, only when taken in aggre-
gate. With the lattice gas the model is a micro-model, finely sampled in space and
time, and the macro-model only emerges on averaging the micro-model in space
and time. With M1, the model field is a set of realizations of a random process,
and useful results only emerge when the individual realizations are averaged over
the set. The M1 process is less physical and more information theoretic.
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A collision principle

The other major difference between the lattice gas and M1 is in the collision rules.
Whereas lattice gas rules are experimental, dealer’s choice, M1 rules are uniquely
determined for any lattice and particle configuration by an entropy principle.

Particles emerge from a collision in any of the constraint-equivalent
states with equal probability.

Note particularly that this allows for the particles to emerge unchanged in configu-
ration, as indeed they must where there are no other equivalent configurations. As
an example, and apart from do nothing rules, the HPP-equivalent rules are:

{1,0,1,0} into {0,1,0,1} or {1,0,1,0}
and

{0,1,0,1} into {0,1,0,1} or {1,0,1,0}
both with equal probability.

Reversibility and Invertibility

An interesting and quite general feature of this rule design is that although it
is not reversible, it is time symmetric—there is precisely the same information (or
lack of it) about the outcome of a collision as there is about its antecedent. This
symmetry, coupled with the memoryless property, classifies M1 as a symmetric
Markhov process. Since translation, the other half of the evolutionary process, is
reversible, we can state an inversion rule:

Inversion is accomplished by reversing the translation operation and leav-
ing the forward collision rules intact.

Computational considerations

From a computational point of view, 1024 independent but structurally identical
problems may be more efficiently processed than the 32-fold increase in each of the
two spatial dimensions of a lattice gas model experiment, and this might be true
at both ends of the computer power spectrum. Small machines, such as the IBM-
PC, with limited memory and addressing capability, should benefit from the serial
opportunities afforded by the multi-independent structure, while large machines,
such as the Cray XMP4, will take advantage of the parallel possibilities.
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M2 SCHEMES

The finite set of experiments that characterizes M1 is replaced in M2 with the
average over the ensemble of all such possible experiments. Model values are expec-
tations, ranging in value from zero to unity, and since these expectations are also
probabilities of occurrence of particles, M2 schemes are Markov random fields.

Working with ensemble averages rather than finite sets of individual realizations,
thermal noise is eliminated, and there appear possibilities for massive improvement
in computational efficiency over M1, particularly for the modern parallel, floating-
point multi-processor.

The collision principle and a dilemma

The maximum entropy principle which guided evolution in M1 is just as valid
in M2. Given an input vector:

P, = (piny,...,ping)

find an output vector:
P,y = (pouty,...,pouts)

which maximizes:

6
Entropy(Pou) = — ) _(pout; - loga(pout;) + (1 — pout;) - logs(1 — pout;))
i=1
subject to the constraint that the mass and momentum of P, are conserved in P,,,.

The problem is that, unlike M1, there appears to be no closed form solution to this
constrained maximization.

A stosszahlansatz solution

This solution follows a three step process. It is not optimal, the output vector
is not, typically, the maximum entropy vector, but it honors the model bounds,
0 < pout; < 1, and the conservation constraints, and may, on repeated application,
converge to the (unique) constrained mazimum entropy value from any allowed in-
pul. The steps are as follows:

1. The input vector is disassembled into the set of all possible states weighted
by their probabilities.

2. Each weighted state is replaced by the weighted average of all the constraint-
equivalent states.

3. These weighted average states are reassembled into the output vector.
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The disassembly follows a non-committal (maximum entropy) linear decomposition,
which can also be viewed as based on a model of molecular chaos, or independence
of motion between particles on different direction planes. Relevant results from
finite state probability theory are:

1. The ezpectation or ensemble average of a Boolean random variable is equal to
the probability that it is unity, and the probability that it is zero is one less its
expectation.

2. The joint probability of occurrence of a set of independent events is the product
of their individual probabilities.

The first allows for the determination of the probabilities of occurrence or non-
occurrence of the various particle types, and the second for the various particle
type combinations or state probabilities from the individual type probabilities.

Another strategy

The makings of an alternative strategy, which might be appropriate to the 24-
particle HLF model, is as follows:

1. Establish the constraints.

2. Fit the momentum vector to the minimum number of points necessary to
describe it.

3. Spread the excess mass out evenly over all the other points less those antipodal
to the fitting points.

Inversion

Inversion follows the M1 pattern closely, and for the same reasons:

Inversion is accomplished by reversing the translation operation and leav-
ing the forward collision process intact.

M3 SCHEMES

Evolution

The acoustic wave equation is a linear equation based on more general forms by
considering small perturbations about an equilibrium state. In a similar fashion the
M2 evolution operation can be linearized in case the model is close to equilibrium—
this being particularly useful since the constraints, the three conserved quantities,
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FIG. 1. A snapshot of a wave initiated by an impulsive point source in a low velocity
medium. The wave has met a medium with twice the velocity but no change in
impedance. The direct, refracting, reflecting, and head waves are all visible, and
the reflected wave correctly has no amplitude at normal incidence. Notice also the
isotropy in the direct wave, and the Hankel tail evident on both the direct and
transmitted waves. Evolution took place every other time step in the slow velocity

upper half as previously discussed (Muir, 1986). This model used M3, the linear
model, a hexagonal grid, 6 particles, and the matrix operator discussed in the text.

mass, momentum and energy, are all linear functions of the M2 average model
vector. I state without proof that the required conservation-constrained maximum
entropy solution approaches the constrained L, solution as equilibrium is reached.
From all this the matrix operator is found without difficulty, and in closed form.
For example, in the case of the FHP-like M3 model, the symmetry in the placement
of the six neighbors forces circular symmetry on the matrix. In turn, this fixes the
eigenvectors of the matrix, and, by inspection, three of the eigenvalues must be
unity to satisfy the mass and momentum constraints, and the remaining three must
be zero to satisfy the minimum norm criterion. For this model the top row of the
circulant is:
(1/2,1/3,0,-1/6,0,1/3)

and it was this operator that was used to generate the wave-field illustrated in
Figure 1.
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Inversion

Since the collision matrix is always idempotent, with either zero or unity eigen-
values, the appropriate inverse is the Moore-Penrose pseudo-inverse, the matrix
itself. The inversion process thus follows M1 and M2 very closely:

Inversion is accomplished by reversing the translation operation and leav-
ing the forward matriz operator intact.

DISCUSSION

The uniform rules developed for the M1 systems could as easily be used, with

profit, in lattice gases. It is likely that these rules could lead to much simplified
analysis.

In case of linear diffusion and wave equation problems, the lattice gas is no
match for M3, which is truly linear, noise free, and efficient, particularly on the
super(mini)computers with floating-point processors that are the backbone of mod-
ern scientific conputing. Constant-q wave equations in their PDE form lie between
the diffusion and wave equations, and an interesting possibility is that constant-q
behavior can be mimicked by reducing the two momentum-controlled eigenvalues
in the FHP-like M3 scheme from unity to something less.

The fine spatial sampling associated with the lattice gas also means that the
mean free path, on the final macro scale, may be considerably shorter than a com-
parable M1 scheme, and this might be critical for some problems.

Lattice gases (and, I suppose M1 schemes) are adept at modeling eddy and
turbulent flow representing metastable and not true equilibrium states. On the
other hand, it is likely that M2 can reach equilibrium states that are not accessible
to M1 and the lattice gas. Both representations may be useful, and it is possible
that an equilibrium, M2 solution represents a useful point of departure for non-
laminar flow studies, since it is not difficult to switch back and forth between M2
and M1, and M2 and the lattice gas.

EQUIPMENT

Good hardware and software tools played an important role in the development
of the ideas behind this paper.

Computer programs were developed on an IBM PC-AT, using a Logitech mouse,
and the Norton Editor, Commander, and Utilities. Pilot code was compiled, linked,
and executed with the Ryan-McFarland FORTRAN77 system. pfs:ACCESS was
the communications program that provided the link over to a main-frame UNIX
machine, the Convex C-1 of the Stanford Exploration Project. Remote operation of
the Convex and file transfer between the two systems was likewise under ACCESS
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control. Over on the Convex, the FORTRANT77 code was studied, re-written, and
recompiled using the usefully verbose vector compiler and in-house utilities avail-
able on that machine. Movie software by Rick Ottolini was the incomparable means
for studying results in a dynamic and graphical way on a Rastertek monitor. The
electronic network available through the Convex is an invaluable means of commu-
nicating with remote colleagues.
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FURTHER READING

While there is yet no standard text on lattice gases, Wolfram (1986a) provides
an excellent introduction, an important critical bibliography, and a useful collection
of recent papers leavened with otherwise unpublished material. The same author

has also recently published the first of several papers designed to review the field of
fluid automata (Wolfram, 1986b).
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