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Velocity analysis by nonlinear optimization
of phase-contoured shot profiles

Jos van Trier

ABSTRACT

The curvature of reflections from planar beds in migrated shot profiles depends on
the migration velocity that is used. Overmigrated reflections curve downwards, while
undermigrated ones curve upwards. Thus, curvature can be used as an objective func-
tion in an optimization scheme to determine the correct migration velocity.

Curvature is estimated from lines of equal instantaneous phase in a shot profile by
taking the second derivative of these phase contours. Phase contouring can also be used
to calculate local dip and find static corrections.

In the optimization, the velocity model is parametrized into basisfunctions, so that
the number of unknowns is reduced considerably. The optimization method is a non-
derivative method, i.e., no gradient of the objective function needs to be calculated.
The optimization is also nonlinear: no linear approximations are made to relate model
and data. Each iteration in the optimization consists of a shot-profile migration with
the current velocity model. The estimation of the curvature is independent of the type
of migration used in the optimization. So, by using a depth migration, the model can
be expressed directly in interval velocities.

For general geology (i.e., curved reflectors), several shot profiles are needed to de-
termine the velocity model. The curvature analysis in each shot profile (along the

geophone direction) then has to be combined with a curvature estimation in the shot
direction.

INTRODUCTION

Velocity analysis through stacking is normally done before migration. However, errors
in velocity analysis cause artifacts in migration, and stacking velocities are not necessarily
the same as migration velocities. By combining velocity analysis with migration, these
interdependency problems can be eliminated: a recorded dataset may be migrated with a
guessed velocity model, and the resulting artifacts used to update the guess.

In the last SEP-report (Van Trier and Rocca (1986)), I described a method to estimate
velocities from unfocused diffraction events in migrated stacked sections. The shape of
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a diffraction event in the migrated section depends on the migration velocity. When the

migration velocity is too high, the shape is a “frown,” when the velocity is too low, it is a
“smile.”

Reflection events in shot profiles display a similar behavior: a reflection from a flat
(horizontal or dipping) bed shows up either curved upwards or downwards in the migrated
profile, depending on the migration velocity that was used. This is illustrated in Figure 1.
Figure 1a shows a reflection from a dipping bed; Figures 1b, ¢, and d display migrations of
the event with velocities of 2.0 km/s (the correct velocity), 1.8 and 2.2 km/s.

Estimation of the curvature in a shot profile makes it possible to determine if the right
velocity was used in the migration of that profile. A measure of the curvature can be
used as an objective function in a nonlinear optimization scheme that iteratively finds the
correct velocity model, where each iteration consists of a single shot profile migration.
Traditionally, such optimization methods use the power or the semblance of the stacked
section as an objective function. Using curvature has the advantage that only one shot
profile is needed for the velocity estimation, while still handling more general geometry
than the NMO-velocity analysis, in which the layers have to be flat and horizontal. Also,
the curvature is sensitive to migration velocity over a wider range of velocities.

The curvature estimation method is independent of the type of migration used in the

optimization. So, by using a depth migration, the velocity model can be directly expressed
in interval velocities instead of stacking or rms-velocities.

The velocity model is described in terms of basisfunctions (like, e.g., Nolet, Van Trier
and Huisman (1986)). This limits the number of parameters drastically, enabling the use
of a non-derivative optimization method. Furthermore, the velocity model need not be
constrained by adding a model-norm (of the model and/or its derivative) to the objective
function: the smoothness of the model can automatically be accomplished by using smooth
basisfunctions.

Of course the velocity estimation is not limited to one profile; in fact, one wants to use
the full (and partly redundant) information in all the shot profiles. I will describe in a later
section how to integrate the information of several shot profiles into one velocity model and
how to handle curved reflectors.

The curvature estimation is based on picking events by phase contouring. Reflection
events have continuous instantaneous phase across the profile. Lines of equal instantaneous
phase are extracted by a contouring algorithm. An event is then represented by a contour
line, and the curvature of the event is estimated by taking second derivatives of the contour
line. In the last section I will discuss some other applications of the phase contouring
method.

CURVATURE

Automatic picking by phase contouring

The human eye easily picks out reflections and their curvature on a shot record. It
detects the strong amplitude events and then follows each event along lines of equal phase.
This process can be mimicked with the help of complex seismic trace analysis.

A discrete complex trace, F; (¢ is time), has as its real part the seismic trace f;. Its
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FIG. 1. Reflection from a dipping bed (a), migrated with 2.0 (b), 1.8 (c), and 2.2 km/s (d).

The correct velocity is 2.0 km/s.
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imaginary part, f;, consists of the Hilbert transform of f;. So, F; can be written as:

Fe = fi + ift*, ft* = y(ft)» (1)

where X denotes the Hilbert transform. The Hilbert transform can be implemented either
in the time or Fourier domain (see Taner, Koehler and Sheriff (1979)). In this paper I
used a time domain operator with a length of 21 points. The instantaneous phase, ¢;, and
envelope, a;, are now defined as:

¢ = tan_l(%) (2)

a = |R| = \/fF+ 17 (3)

Figure 2 shows part of a seismic trace and its instantaneous phase and envelope. The
reflection events in a shot profile can be traced along lines of equal instantaneous phase.
However, because phase is independent of reflection strength, the phase image of a shot
profile will be heavily distorted by the influence of noise. Therefore, the instantaneous
phase is weighted by the envelope to select out the major events:

wy = Q¢ ¢t (4)

Figure 2d shows the weighted instantaneous phase of the seismic trace in Figure 2a. The
trace is taken from dataset 27 of the field profiles of Yilmaz and Cumro (1983). Figure 3
displays this field profile, deconvolved with Claerbout’s simultaneous-deconvolution method.

The w¢-traces are calculated for each offset h in the shot profile, resulting in a two-
dimensional function wp, ;. The w-map of Figure 3 is shown in Figure 4. Once the Wh, ¢-map
is calculated for the entire shot profile, the lines of equal phase can be extracted by a
contouring algorithm. There are many efficient contouring algorithms available, I chose one
that has been in use at SEP for some years now, and that has been developed by Cottafava
and Le Moli (1969). The algorithm “hooks on” onto a point of given amplitude, and then
traces all neighboring points of equal amplitude until it reaches a boundary or the starting
point again. Linear interpolations are performed when the amplitude of the contour is not

exactly equal to the amplitude of a grid point. The contour map of Figure 4 is shown in
Figure 5.

Picking events by phase contouring is more robust than picking peaks in the actual
seismic trace, because instantaneous phase emphasizes the continuity of events, as observed
by Taner et al (1979). Also, the “spikiness” of the weighted phase (see Figure 2d) sharply
defines the event. It is not necessary to pick peaks; slicing through the spiked events by
contouring is almost as accurate as selecting the peaks themselves.

Curvature estimation

Assume that one reflection event is represented by a certain contour ¢t(h). Note that the
dimensionality is reduced by one. Curvature is now estimated by a 3-point second-derivative
operator:

2 — —
c(t(h),h) = aa—hzt(h) () 22(:2) + t(h+ AR) -

There are some practical matters to consider:
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FIG. 2. Seismic trace (a), instantaneous phase (b), envelope (c), and weighted instantaneous
phase (d).
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FIG. 3. Deconvolved profile 27 from Yilmaz and Cumro (1983).
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FIG. 5. Phase contour map of the 27-profile.

1. The linear interpolation causes a zig-zag pattern in the contour. To smooth
out the resulting fluctuation in the curvature, the finite-difference interval Ah
is chosen to be larger than the offset sampling rate and a moving average filter
is applied.

2. The “turning points” of the contour have to be discarded, because the curvature
is of course incorrectly calculated in those points.

3. As can be seen in Figure 5, many small contours are caused by noise, or they
are too small to determine reliably the curvature. These contours are discarded
by setting some minimum value for the number of points in a contour.

Figure 6 shows the curvature of the largest contours in Figure 5. Although the figure is not
conclusive about the absolute values of the curvature in the shot profile, it illustrates that
all the events have a positive curvature.

VELOCITY INVERSION

Objective function

The squares of the curvature can be summed over the whole shot profile and used as
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FIG. 6. Curvature of the main events in Figure 5.

objective function in an optimization scheme that minimizes this objective function:
1 2
Fa(v(z,2)) = N > (Ch,t) ) (6)
h

where F is the objective function, which depends on the velocity model v(z, 2), a function
of z, the lateral direction, and z, the depth. The objective function is normalized by N, the

number of points for which the curvature is determined.

The curvature-norm can be compared to the power of the stacked trace, a conventional
norm in velocity analysis. Consider a reflection from a flat bed. The event is migrated with
a range of velocities and its curvature estimated for each velocity. Alternatively, the traces
in the profile can be summed over offset, and the power of the stacked trace can be used as
objective function. Figure 7 displays the two norms for a reflection event with a velocity of
2.0 km/s. The two norms are strikingly different: the stack-norm is narrow around 2.0 km/s
and flat at the sides, the curvature-norm is broad, and shaped like a parabola. This means
that the curvature-norm is well-suited for nonlinear problems, where the starting velocity
model is far from the real velocity. The stack-norm is probably preferred in the final stages

of the optimization, when the velocity model converges to the earth velocity. To combine
these effects, the two norms can be summed (the power of the stacked trace actually has
to be subtracted from the curvature-norm, if an optimization is used that minimizes the

objective function).
Some information is lost by taking the square of the curvature: it is not possible any more

to distinguish between up- and downward curved events. Therefore, one might consider just
using the absolute value of the sum of the curvatures as objective function:

Pilvles) = 3 |2 o Y
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objective function

velocity (km/s)

FIG. 7. Power of the stacked trace (solid line) and curvature (dotted line) as a function of
migration velocity for a flat reflector model with velocity of 2.0 km/s.

The problem with this norm is that, if one event has some upward curvature and another
event has the same curvature, but downwards, the F;-norm will be zero. The optimization
routine will think it has found the minimum (uncurved events), and will stop. Again, an
obvious solution is to take the sum of the F; and Fs-norms,

F(o(z,2)) = Fi(v(s,2)) + Fa(o(z,2)). (8)

Now, for the two-event example mentioned above, this norm is larger than zero when one
event is curved upwards and the other downwards. When both events are curved either
upwards or downwards, the F-norm is even larger, a desirable feature because the velocity
model is obviously more incorrect in this case.

Parametrization

Instead of sampling the velocity at each depth point (for a 1-D velocity model) or at each
grid point (for a 2-D model) and inverting for many unknowns, we can reduce the number
of unknowns considerably by describing the velocity function in terms of basisfunctions in
a limited number of layers (1-D) or cells (2-D):

NE NG

o(z,2) = D D pij eilz) gj(2), (9)

i=1j=1

where NE is the number of basisfunctions in the lateral direction, and NG the number of
basisfunctions in the depth direction, ¢;(z) is the i-th lateral basisfunction, g;(z) is the j-th
depth basisfunction. The unknowns are the parameters Pij .
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Some simple basisfunctions are:

1 forz;<z<uz;
constant : e(z) = i i+1s

0 elsewhere;

(10)
T — x;

: —— for z; < z < z441,
linear : e(:c) - Tiy1 — T

0 elsewhere;

where z; and z;,, are the boundaries of layer . One layer can have several basisfunctions
to build up a complicated velocity function. Also, basisfunctions may overlap: e.g., one
constant basisfunction can extend across the whole model to represent the “dc-component”
of the model, whereas several others in smaller layers define the fine behavior of the velocity.
To illustrate the concept, Figure 8 shows how one 1-D velocity function is constructed from

several basisfunctions. In the 2-D case, basisfunctions are superimposed in the lateral
direction (Figure 9).

Velocity is often desired to be continuous across layers. Continuity can be added as
a constraint in the optimization. An alternative is to choose higher order basisfunctions,
such as cubic or B-splines (Guiziou et al (1987)). Splines have the additional advantage

that layer boundaries are not “rigid”: the velocity function need not necessarily go through
sampled points at the boundaries.

There are some good reasons for parametrizing the velocity into basisfunctions:

1. Cost: by reducing the number of parameters from thousands to dozens, the cost
of optimization reduces accordingly.

2. Smoothness: velocity functions are generally smooth, unlike for example static
corrections (one geophone can be placed in a ditch, whereas its neighboring
geophones might be put on a flat meadow). By using smooth basisfunctions,
this behavior is explicitly taken into account.

3. Resolution: velocity information comes from the arrival times of the reflected
waves of a limited number of reflectors; the fine behavior of the velocity is
unresolved between those reflectors. By choosing the number of layers to be
about the same as the number of reflectors, we have a useful set of parameters;
the null space of the inversion problem is reduced to zero.

A disadvantage of this parametrization is of course that the inverted velocity function is
limited by the a priori chosen layer or cell boundaries and basisfunctions. However, this is
the same limitation that can be found in optimization methods where the velocity function

1s a posteriori constrained by adding a model-norm (of the model and /or its derivative) to
the objective function.

Nonlinear optimization

The expression for the parametrized velocity function (equation (9)) can be substituted
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in equation (8):

NE NG
F(v(z,2) = F( XY pij ei2) 95(2) ) = F(p), (11)
i=1j=1
where pis a N E- NG-dimensional vector, whose elements are the unknowns pi; that control
the basisfunctions.

The goal of the optimization is to find the vector p,, that minimizes F. The optimization
method I used is a non-derivative method (Powell (1964)). It iteratively builds up conjugate
directions, by using only function evaluations. Each iteration consists of n searches in n
parameter directions. The details of the method are explained elsewhere in this report (Van
Trier (1987)). The optimization is fully nonlinear: it does not use linear approximations to
evaluate the objective function or its derivatives.

Because there is no gradient information, albeit linear, gradient methods can only be
used if the gradient is calculated by finite differences. For a n-dimensional objective function,
this means that the function has to be evaluated n times to calculate one gradient direction.
A conjugate-gradient method then becomes about expensive as Powell’s method. Also, the
finite difference interval for the gradient calculation is hard to determine, and generally has
to be adjusted during the optimization (Van Trier (1987)). Nevertheless, when the number
of parameters gets large, conjugate-gradient methods are likely to be more efficient. I have
not yet tested large parameter problems to confirm this.

RESULTS

The main purpose of this section is to illustrate that the method works on field data;
no attempt is made to interpret the inverted velocity models.

To compare the method with conventional velocity analysis, the optimization is first
done with NMO instead of migration. A comparison is also made between optimization
with curvature as objective function and optimization that maximizes the power of the
stacked trace. The curvature-objective function is the Fa-norm of equation (6), I have not
yet tested the F-norm (equation (8)) or combinations of the curvature- and stack-norm.
The velocity models that are considered here are 1-D models; the velocity is not allowed to
vary laterally.

NMO

In traditional velocity analysis a CMP gather is move-out corrected with a constant
trial velocity. The moved-out gather is summed over offset, resulting in a stacked trace.
The process is repeated for many velocities, and a contour map of the power of the stacked
traces is then used to pick velocities. Such a contour map for the gather in Figure 3 is shown
in Figure 10. Although the gather is a shot gather, the geometry is assumed to be flat, so
that the move-out in the CMP gather is the same as in the CSP gather. The flat geometry
assumption is confirmed by tests with the Overlay program (Claerbout (1986)). These
tests show that the reflection events can be fitted by hyperbolas computed for horizontal
geometry. The apparent decrease in velocity in the deeper region is probably caused by the
left-over of a pegleg not removed by the deconvolution.

The optimization is first done with the power of the stacked trace as objective function,
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to compare with traditional velocity analysis. The velocity is parametrized in linear bas-
isfunctions with continuity across the boundaries. The boundaries are chosen at 0.8, 1.5,
and 2.1 s.

After one iteration, i.e., after finding a minimum in each of the parameter directions,
the moved out reflectors are more or less flat. Additional iterations hardly improve the
objective function, and the optimization is stopped after 3 iterations. The result of the
optimization is shown in Figure 12. Figure 11 shows how the velocity changes during the
iterations. The inverted velocity profiles match well the output of conventional velocity
analysis (Figure 10).

velocity (km/s)
1.8 1.8 2 2i2 2i4 2i6 2.8 3 3.2

.
o

FIG. 10. Velocity panel for gather 27: some of the inverted velocity profiles of Figure 11
are plotted on top of the contour map: the thin line is the result after 1 iteration, the thick
one the result after 3 iterations.

For NMO, using the curvature as objective function is not necessarily better than using
the power of the stacked trace, because NMO is limited to horizontal reflectors anyway.
The curvature-norm can be more robust than the stack-norm, though, as discussed in the
previous section, and our main concern here is to compare the two norms.

The “curvature optimization” also converges after only one iteration, and is stopped
after three iterations. The result is shown in Figure 13, the inverted velocity profile in
Figure 14. The NMOed dataset in Figure 13 looks identical to the one in Figure 12, except
for the reflector at 2 s, which is still slightly curved at the wide offsets. The curvature is not
estimated at the widest offsets because of end effects (see section on curvature estimation),
so residual NMO at these offsets will not be detected.

The difference in the inverted velocity models is more apparent (Figure 14). This brings
up some interesting questions on how well resolved the velocity is, and how the choice of
basisfunctions effects the inversion. I will not discuss these issues here, but I would certainly
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velocity (km/s)

M T T T T T
0 5 1 1.5 2 2.5 3
time (s)
FIG. 11. NMO-velocities after each iteration. - - -: starting velocity; ———: after 1
iteration; - - -: after 2 iterations; — — —: after 3 iterations.

like to address them in the future.

Shot profile migration

The curvature optimization is now done with shot profile migration instead of NMO.
The migration is a fast Kirchhoff-integral depth migration (Etgen (1987)). Unlike NMO and
time migration, layer boundaries in the velocity model are hard to determine in advance
for depth migration. Therefore, only “rough” basisfunctions are used: a constant and a
linear one across the whole model, a linear one in the top half of the model, and a linear
one in the bottom half. The velocity is constrained to be continuous across boundaries.
The optimization converges again after one iteration. The migrated shot profile is shown
in Figure 15, and the result of each parameter search in the first iteration in Figure 186.

The optimization has flattened the deeper reflectors (the curved tails at the wide offsets
are migration artifacts, which are not picked up by the curvature estimation because of their
low amplitude), but the shallow events seem to be overmigrated. The chosen configuration
of basisfunctions is too limited to build up a velocity function that can flatten all reflectors.
Also, migration focusing narrows the shallow events, and curvature is harder to determine.
A different set of basisfunctions needs to be chosen, and more shot profiles need to be
included in the optimization. The next section deals with the latter problem.

BEYOND SHOT PROFILES

The optimization really has to be extended to include the information of an entire
seismic survey, consisting of multiple shot profiles. One approach is to optimize each shot
profile separately, adjusting one 2-D velocity model that extends over the whole survey.
The information in each profile contributes to a different part of the model.
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FIG. 13. NMOed data: result of the optimization after 3 iterations. The optimization uses

the curvature as objective function.
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velocity (km/s)

T
0 5 1 1.5 2 2.5 3

time (s)

FIG. 14. The inverted velocity profiles of stack-power (dashed) and curvature optimization
(solid).
offset (km)
.0 1 1.5

FIG. 15. Migrated data, after one iteration in the curvature optimization. The plot is
“dithered” because the continuity of the reflectors can be better seen on a dithered plot
than on a wiggle-trace plot.
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FIG. 16. Migration velocity after one iteration (thick line). The thin lines show how the
velocity function is constructed from basisfunctions during the iteration. Each thin line
shows the velocity function after the minimum in one parameter direction has been found.
(For example, the first parameter determines the weight of the constant basisfunction across
the whole model, the dc-component. The constant velocity model that fits the data best is
shown by the dotted line.) - - -: starting velocity; - - -: after first parameter search; —
after second parameter search. The result of the third parameter search can not be seen:
it is covered by the thick and the solid line.

Treating each shot profile separately has some advantages: on parallel computers several
shot profiles can be optimized at the same time, and each shot profile represents a single
physical experiment. There are also some disadvantages. First, the optimization of one
profile can destroy the results of previous optimizations. Another problem is that the
curvature of events in a single profile can be caused either by incorrect migration or by
curvature in the reflectors themselves. This ambiguity can be resolved by looking at the
curvature in common receiver gathers (Al-Yahya and Muir (1984)): they observe that “only
when imaged correctly will an event be horizontally aligned in a migrated common receiver
gather.”

Therefore, the optimization can be started by optimizing single shot profiles with a
roughly parametrized velocity model, determining the gross structure. After that the com-
mon receiver gathers are optimized with a more finely parametrized model, to find detailed
structure. The second step properly treats curved reflectors.

SEP-51



Van Trier 104 Velocity analysis and curvature

OTHER APPLICATIONS OF PHASE CONTOURING

Tomography

Since the phase-contouring method picks traveltime curves, it can be readily applied in
tomography. The described velocity-analysis method itself is tomographic in the sense that
1t uses a feature of traveltime curves, the curvature, to determine velocity.

Local dip

Just as second derivatives of reflection events t(h) determine local curvature (equa-

tion (5)), first derivatives give the local dip, p:
9 _ t(h+ Ah) — t(h)

plt(h),h) = o= t(h) = s (12

The dip can be determined very locally in this way, much more local than with local slant

stacks, where the dip is found by summing over line segments that extend over a range of

traces. The local-dip section of profile 27 is shown in Figure 17. To display local dip in

many events, the undeconvolved profile, which still contains all the multiples, is used. The

figure clearly shows how the dip increases as the offset increases. The resolution of the dip

estimation is hard to see on the plot (a color display is useful here), but the high resolution

is illustrated by the sensitivity of the dip estimation to residual statics at the offset of 1.1
km (the same statics can also be seen in Figure 3).

Statics

As mentioned above, local statics cause anomalies in the global curvature or dip of an
event. Therefore, an optimization that minimizes curvature or dip can be used to find static
corrections. It is not necessary that the curvature or dip has to be zero in the corrected
shot record; only anomalous curvature or dip has to be detected against some background
level. This means that the shot profile need not be NMO-corrected (or migrated): residual
(e.g., non-hyperbolic) NMO, or residual migration will not effect the estimation of the static
corrections.

CONCLUSIONS

The described method combines migration with interval velocity estimation. The con-
cept is not new (e.g., see Al-Yahya and Muir (1984) and Fowler (1985)), but the parametriza-
tion of the velocity model into a small number of basisfunctions enables the use of an opti-
mization that does not depend on a linearized relation between model and data. Curvature
seems to be a good objective function for this nonlinear optimization scheme, because its
sensitivity to migration velocity extends over a wide range of velocities.

Some improvements can be made in the curvature estimation method: the linear inter-
polation in the contour algorithm can be replaced by a more accurate one, a higher-order
second-derivative operator can be used to calculate curvature, and, instead of smoothing
by moving average filtering, smoothing can be done with a tridiagonal smoother.

As for the parametrization, the predefined boundaries of the basisfunctions pose a prob-
lem when depth migration is used in the optimization. A solution is to add the boundaries
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FIG. 17. Local-dip section of the undeconvolved 27-profile: grey represents low dip, white
high dip.
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as parameters to the optimization problem, or to use cubic- or B-splines as basisfunctions.
In the optimization, the different objective functions have to be tested.

Finally, the optimization has to be extended to include more than one shot profile.
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