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Analysis of a dip-dependent operator relating
migration velocities and interval velocities

Paul J. Fowler

ABSTRACT

In previous papers in SEP-44 and SEP-48 I derived a linear operator that
relates perturbations in interval slownesses to the resultant changes in the
slownesses used for prestack time migration. This operator is suitable only for point
diffractors; the migration slowness change for a continuous reflector will not in gen-
eral be the same as the migration slowness change for a point diffractor. In this
paper I show how to decompose the point-diffractor operator into dip components
and from this, how to derive an operator suitable for continuous beds of any
specified dip. This dip-specific operator, like the all-dip point-diffractor operator, is
derived using a two-step procedure of first tomographically estimating traveltime
perturbations, and then finding a least-squares fit for a diffraction pyramid to the
perturbed traveltimes. This fitting now uses not the whole pyramid, but only that
part of it illuminated by a family of rays symmetric around the normal-incidence

ray. For flat beds, the dipping-bed migration- slowness operator reduces to Toldi’s
flat-bed stacking-slowness operator.

INTRODUCTION
Building on ideas of Fabio Rocca’s, Loinger (1983) and Toldi (1985) analyzed the

relations between stacking velocities and interval velocities. For regions with significant
geological structure, prestack time-migration velocities are easier to use than stacking
velocities for velocity analysis, because they are much less sensitive to the effects of
structure. These time-migration velocities can be derived easily by multiple constant-
velocity prestack Stolt migration (Shurtleff, 1984), or by applying DMO and migration to
constant-velocity stacks (Fowler, 1984). In previous papers (Fowler, 1985,1986), I have

described how one might extend Toldi’s algorithms to apply to migration velocities.

In this previous work, I derived a linear operator relating perturbations in interval
slowness to the changes they cause in migration slowness. I also discussed how such an
operator could be used in an automatic velocity-analysis algorithm. Numerical experi-
mentation has convinced me that the theory I derived for the linear operator needs
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Fowler 64 Migration velocity analysis

refinement. In this paper I re-examine the derivation of the operator, and show how to
convert it into one more suitable for implementation. I do not discuss further here how
to use this operator for velocity analysis; for that I refer the reader to Toldi’s disserta-
tion and to my previous papers.

The operator I previously derived treated each point in the Earth as an isolated
diffractor, as is done in deriving migration operators. The problem I encountered is that
I am, in effect, back-projecting traveltime residuals, not wave fields. The point-diffractor
model works for waves because of constructive and destructive interference. For travel-
time computations, one wants to back-project only along those rays that represent
significant energy propagation, where the wave interference is constructive. One way of
thinking about this is to visualize a point-diffraction traveltime pyramid at each point in
the earth; only those parts of each pyramid are really “illuminated’’ by the seismic
experiment that contribute to building up the continuous-bed traveltime curves actually
visible in data. For a constant-velocity medium, the migration velocities measured from
point diffractors would be the same as from any structure. However, if the velocity is
perturbed, the change in migration velocity one measures is not structure independent.
Thus the theory for the linear operator relating these changes must explicitly contain the
local dip.

In what follows I derive such a dip-dependent operator. To do so, I first review the
derivation of the all-dip point-diffractor operator, slightly modified. I then show how to
decompose it into dip components to get a dip-dependent operator.

DERIVING THE ALL-DIP OPERATOR (ONE MORE TIME!)

Write the migration slowness w as a function of midpoint y and zero-offset time 7,
and the interval slowness m as a function of lateral position z and depth z. What I
want to find is an expression for dw, /dm, , relating a change in interval slowness at a
particular model anomaly point a=(z, ,2, ) to the resulting change in observed migration
slowness at some point d=(y,,74) in the data space.

Relating traveltime perturbations to diffraction pyramids

Consider first a single point diffractor at (z, ;24 ) in a medium of constant slowness

w. If one runs a seismic survey passing over this point, the kinematics of the pre-stack
point diffractor are described by the pyramid equation

t = w \/zd2+(y—-h —Tg )2 + w \/zd2+(y +h -4 )2 (1)

where ¢ is the traveltime and & the half-offset. Suppose now that the slowness model is
perturbed. The travel-time data for the point diffractor is now a set {tix y; b } which
no longer satisfies equation (1) exactly. However, if the perturbations are not too large,
1t is possible to define a slowness W, a zero-offset time T, and a location Y for which
an equation of the form
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t =VT%4+ WHy-h-Y )2+ VT4 + Wy +h-Y)? 2)
best fits the data points in a least-squares sense.

Note that it is necessary to consider the changes in T and Y as well as W, since
all three may change. I want to consider not just perturbations away from constant
slowness, for which the initial pyramid is an exact fit, but also from variable slowness
case, where one has a previous estimate of the best fitting pyramid and perturbs it in
turn. For variable slowness it is not in general true that T =Wz, and Y =z, as they

would be for the constant slowness background of the starting model.

The pyramid equation (2) does not lend itself to a ¢ >z 2 linearizing parametrization
such as Toldi used for least-squares analysis of stacking slownesses. Instead, I solve the
problem of fitting a pyramid through the data points {ti yi ,hy } by linearizing around
an initial value of (W,T,Y) Then the set of equations to solve are given by

SroA O ot at at
L R — v — —_
e~ (W, TT) + 5 AW + 0 AT + S0 AY (3)

where all the partial derivatives are evaluated at (W,T,}A’,yi ,ht ). To make the nota-
tion more compact, denote the partial derivatives by subscripts: 8¢ JOW =ty , ete.
Explicitly,

tw . W(y-h-Y)?
tr | = T /4 (4)
ti VT4 + W¥y-h-Y)? WYy +h)
Wy +h-Y)?
+ 1 T /4
VT4 + Wiy +h-Y)? WY —yh)

Let boldface denote vectors, so tyw={(t}y )i }, etc. For generality, let a;; be a set
of weights for the least squares fitting. Write the weighted inner product as, e.g.,:

twtr = 3 i ()i (b7 )i - (5)
ik

One then needs to solve the following system of normal equations for (AW AT ,AY):

This matrix equation has the solution

AW A-At
AT |= % BAt | (7)
AY C-At
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where
A = ajtw + asty + asty (8)
B = bty + boty + bty (9)
and
C = bitw + botp + bsty . (10)

The scalars a4, ay, etc., as well as D, are all functions of various combinations of inner
products of the form ty - tr, etc., and can be found by Cramer’s rule.

I have tried without success to find closed form solutions or approximations
expressing these many inner products as simple functions of the upper and lower bounds.
Toldi was able to approximate his analogous, but much simpler, sums by integrals that
could be solved explicitly. Unfortunately, the integrals become too messy here. In prac-
tice, the closed form solutions are not too useful, anyway. It is better to evaluate this
generalized matrix inversion numerically, as it can be numerically unstable; I use singular
value decomposition for implementation, zeroing small singular values. One can either
invert the normal equation matrix in equation (6) and have a set of coefficients for equa-
tions (8-10), or invert the original equations (3) and interpolate the coefficients to calcu-
late the operator anywhere other than at the original & and y sampling points. These
coeflicients A;; , By, C;, and D are all functions of W, T, and Y, as well as depend-

ing on the geometry of the seismic experiment.

Relating interval slowness perturbations to traveltimes

These equations (7) describe how the W, T, and Y arising from a single point
diffractor change when the traveltimes are perturbed, I intend, as the notation suggests,
to identify (W, T ,Y) with (w(y,7),7,¥ ). To complete the linearization, I need a relation
between Aty and Am, telling how the traveltimes change when the interval-slowness
model is changed.

Consider the family of rays from the surface to the point diffractor. A perturbation
mm m affects not just one midpoint and offset, but many of them, since the same ray
may be followed for many different combinations of midpoints and offsets. Let the sub-
script ¢ index midpoint and k offsets, and let the subscript @ denote the anomaly coor-

dinates. For a given ray S;, one has

by = fdsik m (xa ’za) . (11)
S

i

Invoking Fermat’s principle, one can perturb the model and calculate the changes in

traveltimes integrating the slowness perturbations along the unperturbed ray Sy, :

Atik = de‘ik‘ Am (.'L'a 2a ) . (12)
St/t
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This last calculation is valid for a general model, but to apply it directly requires tracing
many rays at every iteration. I hope it proves adequate to evaluate these derivatives
only once at the start. If a simple enough starting model is used (constant velocity, or
only depth variable), it may be possible to evaluate them analytically; I consider the con-
stant velocity case in detail. Otherwise one needs to trace rays from all diffracting
points to all surface points, something that is not computationally too dreadful if done
once, but could become prohibitive if repeated too often. This means using approximate
values in place of the more accurate values that would be calculated by ray tracing using

an iteratively updated model, but I do not think this approximation will prove to be too
bad.

Figure 1 shows the geometry of the ray path for a particular diffractor point, mid-
point, and offset in an arbitrary velocity model. Let the subscript d refer to the coordi-
nates of a particular diffractor point (24 24 ), and let the subscript a refer to the location
of a slowness anomaly (z, z,), that is, a particular element of the model m. Such an
anomaly at a depth 2z, can effect the diffraction pyramid if it is at either of two positions
Z, , since it can be intercepted by either the ray going down or the one coming back up.
Using the notation of Figure 1, equation (12) becomes

) 1)
Aty = !dxa fdza Am(z,,2,) cosd)ikl(za) + COS¢’i:(2a) ] (13)
where
o = 6[1:41 -y ,i (za )+ﬂik (za )] (14)
and
by = 8z, ~y i (24 )vig (2,)] - (15)

Now assume that a rule is known associating a diffracting point (24,24 ) with the

point (yg,74 ) where it appears in the data. Rewrite equation (7) as
1
AW(YyT):fz Y o Ay Aty (16)
i k
and substitute from eq (15) for AT to yield

AW(Y,T)Z%ZEO%A“, [z, [z, Am (2, ,2,) x (17)
i k z, z,

61 62
cospy (2, ) * cosdi (2, )

Pull the integrals outside the sums and make the identification of W (Y ,T) with
w(yy,74) to get

Aw(d) = [dz, [dz, Gy (d,a)Am (2, ,2,) (18)

a a
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Yy +h

FIG. 1. Geometry of rays for a single diffractor point and a variable background slow-
ness. The rays for a single trace with midpoint y and offset A are shown, along with
the zero-offset ray (dashed). The diffractor is at (z4,2;). The point in the model at
which the slowness is perturbed is denoted by (z,,z,). The quantities ¢, ¥, u, and y'!
are used in calculating the effect on the travel-time of perturbing the slowness.

where
g Ay 61 bq :
Gw (da) = : + : (19)
u ,Zzlkz::l D costhp (2,)  cosdy (z,)

This Green function Gy (d,a) can be identified with dw,; /dm, ; they both represent the
change in w(y,r) caused by a perturbation in m(z,2). One can also write similar
Green function representations for Gr(d,a) = 87, /0m, and for Gy(d,a) = dy, /Om,
simply by substituting B or C in place of A in equation (19).

Evaluation of the Green function Gy in a form suitable for implementation
involves substituting for the trigonometric terms in equation (19) and using the delta
functions to eliminate one sum. To do this evaluation against a general background
velocity model, one needs to trace the rays to find, for each diffractor and each midpoint
y and offset h, the values of y'(z,), u(z,), ¢(z,), and 4(z,). This computation is
greatly simplified for a laterally invariant background, since the computation is then
identical for all midpoints and need only be done once. Note also that a rule for finding

(ya,74) as a function of (z4,z;) is also needed, and that this rule is also greatly
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simplified for a laterally invariant background. The whole computation of Gy is even

easler for a constant background, and may be done analytically in that simple case.

y-h y' y y+h

FIG. 2. Geometry of rays for a single diffractor point and a constant background slow-
ness. The rays for a single trace with midpoint y and offset A are shown, along with
the zero-offset ray (dashed). The diffractor is at (z4,2;). The point in the model at
which the slowness is perturbed is (z,,2,). The quantities ¢, ¥, p, and y' are used in
calculating the effect on the travel-time of perturbing the slowness.

ALL-DIP OPERATOR FOR CONSTANT SLOWNESS BACKGROUND

If the background velocity model is constant the rays are straight, as shown in Fig-

ure 2, and ¢ and ¢ become independent of z, . Consider first the sum containing &,

N, N
A (y; b )6
Gy )y(d,a) = R 20
(Guda) = 335% a AU 0
Substitute
—1/2
cosp = 24 st +Hy 2" | (21)
V4
— 2)
24—,
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yr =y Yy—24 (23)
and
__h 9
b= (24)
to get
61 =6 [ Ty _y, —HI.(ZG ) ] (25)
zalxa_zd—(y_z;—h) ] (26)
=767 (2,-2) - (y-24-h)] (27)
and then
Ny Neofy by )A (3 by ) [zd2+(?/i ~hy, -z ]1/2
(Gwh(da)= Y]] X (28)

i=1k =1 (24-2,)D

6] Wxg —24 )~(¥; —74 —hye )]

The double sum thus contains non-zero terms only when y; —h, -2, =(z, -2;).
This relation can be used to eliminate either of the sums. I choose to approximate the
sum over h; as an integral and eliminate it using the delta function. Let

h'! =y;~z4—(z, -z, ). Equation (28) then reduces to

(Gw i(d,a) =~ m X (29)
N, L/
S, [ b alu h)A () |22 | oh )

i=1 0

Ny
%—7-——[22+2x—x 2]1/9 o(y; ,h=h") A (y; h=h' 30
ZdDAh d 7(0 d) ,z:":l (yz: ) (yzw ) ( )
where Ah is the survey offset spacing, and L is the cable length. I have assumed that
the innermost offset is approximately zero. By a derivation similar to that of equation
(30), the sum in equation (19) containing &, becomes

Ny
a2 |73 oty h=-h") A h=n")  (31)

=

da)— 7
(GW)Z( )a‘) ZdDAIZ

SO
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1/¢
Gw(d,a) = _Z,DLA_H [zd2+“/2($a ~Zy )2] X (32)

Ny

D) | alh=h) Ay h=h")+ ofyh—h') A (b =h")].
i=1

But only positive values of h really have much meaning here; including the reciprocal
experiments only gives us a constant factor of 2, since A (y,h) = A (y,~h). So, if the
weights « also are an even function in A, one can reduce equation (33) to

1/
GW(d’a):zd—D’yﬂ [3d2+’72(%“$d)2] X (33)
Ny
> [atwh=1n Datun=|0"1)].
i—=1

Note that one could have used the delta function to eliminate the sum over y instead.
Doing this, and letting y' =~(z, —z; )42, one gets
12
Gw(da) = m [Zdz‘ﬂz(% —Z4 )2] X (34)
N
>, [ oly=y' +hy e )A (y=y' +he b)) + oy ==y '~y by )A (y =y ' ~hy h;) ] :
k=1

The y and h in the above equations will now usually not fall on grid points, but A can
be calculated for any y or & numerically. In all these computations against a constant-
slowness background, one can use (7;,y;)=(2wz,;,2;) if an explicit relation between

Aw (yg,74) and Aw (z4,2;) is needed.

Equations (33) or (34) may be understood graphically using Figure 3, which shows a
bird’s-eye view of a traveltime pyramid. Superimposed on the pyramid is the V-shaped
track of a single anomaly. This V will always be a right angle, and will always be at 45
degrees to the y and h axes. For each non-zero offset, two midpoint values contribute to
the sum in equation (34); these correspond to the two legs of the V pattern. Only half
the pyramid is drawn; this corresponds to the restriction to positive & in equation (33).

DIP-DECOMPOSING THE TRAVELTIME PYRAMID

So far I have derived an expression for dw /Om for a point diffractor. In a con-
stant velocity medium the migration slowness observed for a point diffractor is the same
as that observed for any structure. This does not guarantee, however, that dw /Om will
be the same independent of the actual structure present; in fact it will depend on what
dips are present. A point diffractor may be thought of as equal parts of all dips. I now
show how to decompose the traveltime pyramid into dip components to find dw /Om for
a particular dip 6.
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=)

midpoint (y)

offset (h)

FIG. 3. Bird’s-eye view of a point diffractor traveltime pyramid. Contours are equal
traveltime curves. Also shown is the V-shaped pattern of all midpoint-offset combina-
tions that represent rays passing through a particular anomaly point.

Suppose the reflecting point (z;,z;) lies on a bed a bed with dip 8. Figure 4 shows
the geometry of rays reflecting off such a dipping bed. Unlike the rays used for
stacking-velocity analysis, the rays for migration-velocity analysis have a common
reflection point, and do not cross each other. The ray picture for migration-velocity
analysis is like that for flat-bed stacking-velocity analysis, but rotated by the dip angle

so that the rays remain symmetric around the normal incidence ray.

Let z be the point where the normal ray intersects the surface; in general z will
not coincide with the midpoint y. From the law of sines one has

z-s 2!
= 35
sing sin(/2-0) (35)
and
_ ¢
g-s 2 (36)

sing  sin(r/2+0)

where s ==y —h is the shot location and g =y +h is the geophone location, and ¢ is the
incident angle of the rays at the bed, measured from the normal. But
sin(7/2-6)=sin(w/2+6)=cosl, so equations (33) and (34) yield
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y—h y Y +h

FIG. 4. Geometry of rays for a dipping bed and a constant background slowness. The
rays for a single trace with midpoint y and offset & are shown, along with the normal
ray (dashed). The reflecting point is at (z4,z4). Note that the normal ray does not go
through y.

—_ 37
£y s ( )
It follows that
tq1+st
t1+ts

and

RV IR S RVA

tanf — 2 — . (39)
“d Zq [\/s 2+zd2 + \/g 2+zd2)

Substituting y =(g +s)/2 and h =(g-s)/2 gives a relation for 6, but it is awkward to
solve for y or h. A simpler relation can be found using double angles.

Referring to Figure 4 again, one has

s—0-p=¢-0 (40)

SO
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midpoint (y)

FIG. 5. Bird’s-eye view of a point diffractor traveltime pyramid. Contours are equal
traveltime curves. Also shown are lines representing constant-dip components, in incre-

ments of 10 degrees.

and

Substituting

and

gives

1
0= (¥+9)

tan(20) = tan( ¥ + ¢ )
__ tany+tang

1-taniytang

—z4—h
tany = Yt

(45)
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This last equation tells which y and h have rays reflected off the dipping bed at the
particular point (24,2, ). This is the desired decomposition of the pyramid into contribu-
tions from different dips. Figure 5 shows a bird’s-eye view of the traveltime pyramid of
equation (1), contoured in equal traveltime increments. Superimposed on this are curves
from equation (46) that represent 10 degree dip increments.

midpoint (y)

offset (h)

40°30° 20° 10° 0° 10°  20°30°40°

FIG. 6. Bird’s-eye view of a point diffractor traveltime pyramid. Contours are equal
traveltime curves. Also shown are lines representing constant dip contributions, in incre-

ments of 10 degrees, and the V-shaped track of a point anomaly. This Figure combines
Figures 3 and 4.

WEIGHTING DIPS SELECTIVELY: THE DIP-DEPENDENT OPERATOR

So far I have derived an expression for dw /dm for a point diffractor. In a con-
stant velocity earth the migration slowness observed for a point diffractor is the same as
that observed for any structure whatsoever. This does not guarantee, however, that
dw /dm will be the same independent of the actual structure present. Each point
diffractor can be treated as made up equally of all dips; the component for a given 6 is
given by equation (46). Figure 6 shows that the V-shaped track of an anomaly intersects
a constant dip contour only at one point. Limiting the point diffractor Green function

to a single dip component thus has the effect of zeroing out all but a particular (y,h)
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point in the sum of equation (19) or equation (33).

To find the intersection point, rewrite equation (46) as

(y —z4 +24 cot20)? X
TR -———-=1. (47)
z4°csc*26 zg4°csc“20

This c.an be recognized as the equation for a hyperbola with asymptotes
+h = y-z4+cot26 (48)
and foci
(h,y) = (0, 25 +z4 (cot260-+v2csc26) ) . (49)
One can solve equation (47) for & in terms of ¥ and 6 to get
h? = (y—z4 +24 cot20)? - z;%csc20 (50)
= (y-24 )% + 224 (y —24 )cot20 — z,2 .

One could as well solve for y to get

Yolh ) = g -2 cot20 + 1/ h2+2z,%csc?260 (51)

where the choice of sign will depend on whether >0 or <0. Note that 6—0 must be
considered separately; A may then take on any value, but y must always equal z;; the
two branches of the hyperbola have collapsed to one straight line. The delta functions
in equation (19) also give relations between allowable values of y and h, as represented
by the legs of the V pattern in Figure 6. Solving equation (50) and the appropriate one
of these equations simultaneously will give the needed intersection point. For the con-
stant velocity case one has

h = | y-z4-vz,-24) | (52)
and so
W2 = (y-24)" - 2v(xs~24 Ny ~24) + 720 24 )* . (53)
From this and equation (50) one gets
224 (y -4 Joot20 — 2,2 = — 29(z, —24 Yy —24 ) + vz, ~24 )2 . (54)

Solving for y gives

25+ (2, ~34 )?

2[z4 cot20+(z, ~24)]

y = x5+ (55)
(Note that 8—0 is treated correctly as the limiting case of equation (55).) This gives y,
and h can then be found from equation (52):

2’42+72(75a ~4 )

h =
2[zq cot20+~(z, —z4 )]

- Aza-24) |- (56)
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Write these values of the intersection point coordinates as h, and ¥4 Equation (33)
then becomes ‘

(Gw)dd,a) = [+ a2 | (57)

“DAR
o [voda)hdda) ] 4 [vdda)hdda) ]

I note that the values of A, y, and @ which can be used in these equations are restricted.
Both legs of the travel time path must be above the horizontal and must have equal
incident angles; from this limitation one can show that, for positive 6, one must have
cot20> (x4 2, )/(24 -2, ) and for negative 0, cot20< (24 -z, )/(24 -2, )

This single dip operator could also be derived from scratch, fitting only over the
appropriate hyperbolic curve using a sum over h only, then replacing the sum by an
integral and using the delta function to eliminate the integral; the result is again equa-
tion (57). A subtle, but important, point to notice here is that A and D in the preced-
ing equations should really be written as A y and D ,. The factors of twtt and such like
that occur in the coefficients in equation (6) will in fact be different for each dip. The
inner products must also be taken over the appropriate hyperbola, which will differ for
each dip, rather than over the whole pyramid.

What does this mean in practice? It suggests that the operator should be weighted
to reflect the actual dips present in the data at each point. For the case of a single dip
component, these weights are just delta functions that pick out the contour representing
a given dip, and would be zero elsewhere. In practice, one might want to weight by an
estimate of the dips in the data, allowing for multiple dips and inaccurate knowledge of
the dips. Reasonable dip estimates should be obtainable from the prestack time
migrated image, perhaps by local slant stacks. The Gy operator could then be
weighted by this estimated dip spectrum. Like the ray tracing, the dip spectrum decom-
position is probably something one would want to do once at the start, and accept the

small inaccuracies that arise by not refining it often as one iterates toward a better
answer.

One can combine the operators for all dips are combined and write

Gw(da) = [d6(Gy)i(d,a) (58)

= [y

The value of this jacobian can be found via implicit differentiation of equation (46) to be

22 (Gwlda) . (59)
y

a9 zg (2824 (y —24 )*+h %) (60)
0y [ 2/ ~(y-zg)+h? PHaz(y 2,
zq (28°+(y —74 *+h?) (61)

{2y —ag P+ P4A(y —zg )R
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This suggests that the integral over a spectrum of dips should either be explicitly taken
over §, or il it is evaluated in terms of an integral over y, the integral should be
weighted by d 6/dy as given in equation (60) or (61). Doing this recovers equation (33),
with the previous warning about the dip dependence of the A and D factors remem-
bered.

One set of weights has been suggested to pick out the contributions that
correspond to the dips present in the data, and another to weight these contributions.
This still leaves freedom to weight the contributions from different offsets & as one

chooses while computing A and Gy in equation (57).

ZERO-DIP OPERATOR

I now look in detail at the special case of §=0. This operator should behave like
Toldi’s stacking operator, since for flat beds and laterally invariant velocities, prestack
migration reduces to stacking. All gathers will be symmetric, so ye=24 and

ho=|~(z,-24)|. In terms of equation (4) this means that

tw 2Wh?

1

tr |= T/2 |. (62)
VT4 + waht |

ty

So {y =0, as one might expect (flat beds don’t migrate laterally), and equation (6)

reduces to
tw At twtw trtw AW
[tT-At ] = [tw-tT b } lAT ] (63)
from which one gets
aw ] | [anat
AT |= 7 | Bat (64)
where
A = (tptr) tw — (twty) b1 (65)
B = —(twty) tw + (twtw) tt (66)
and
D = (twtw) (trtr) — (bwty)®. (67)

Because these inner products are all weighted for flat dips only, they reduce to a sum
over offset h for y =Y . Now assume a laterally invariant background and set Y =x«,,
W=w, and T =2wz;. Then

twtr = Z oy =24 ,h) ty(y =24 k) tr(y=24,h) (68)
h
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2uwh w2y
2 y“‘xdr 5 ;U 2 (69)
h \/w 24"+ w? \/w zd + w?
2h 24
:zh:ay_xd7 2+h2 (70)
L/2 )
2h Zd
=~ dh oy =z4,h 71
L/2

42’th h2

~—% [ dn ofy=a,,h) e (72)

where L is the recording cable length, and N, is the number of offsets used; I assume

for simplicity that the innermost offset is small enough to be taken as zero.

The evaluation of this integral is particularly simple if one takes
as—o(y =24,k ) = 2,2 + h% This choice of weight is not completely coincidental; it can
be shown that this is exactly the weighting needed to convert the linearized least squares
solution I have used here into the z2-t2? parametrization that Toldi used. Using this
substitution one gets

L2
4z4 N;
twtr ~ —— [ a2 (73)
L 0
NhL 24
Similarly one gets
L/2
8N,
twtw ~ — [ dh h* (75)
L
N, L*
~ 20 (76)
and
L/2
2N,
trby A —ﬂ f dh (77)
~ N, z,° (78)
and then

SEP-51



Fowler 80 Migration velocity analysis

Nh2L 42d2
D = 5 (79)

One also has

272(‘7:(1 —Z4 )2

tw (yohy) = (80)
\/zd2+'72(xa —Zg )2
and
24
tr (yphy) = —— = - (81)
\/Zd +v (2 —24)
Thus
2N [129%(z, 24 )P-L 7] o
Alyohe) = — 5 (82)
6\/zd + (za —Zg )
and

24 Nh L 2[3L 2—20’12(2} ~Z4 )2]
B(yahs) = - ooz )] (%)
60/ 24> +9(2, ~24 )
If these are substituted into equation (57) with o(ygh g)=2,2+~v(z, -z, )? the result is
that

(G omolda) = 2L [40(s, 2, 7 4 [vdaa) ) | (84)
= 25 ey 20 | [ 120021 ] (85)
24

Letting L ' =L /~ and shuffling terms around a bit yields

2
15z 2z, =
i [3[ (z-aa) )|

(GW )0=0(d)a') = I 2L ! L'

2
L 2 2(:I:a -z )
1+ i [ = d (86)

which is just equation (4.18) of Toldi’s dissertation (p. 77) with minor notational
changes.

The similar expression for Gy becomes

2N, v 3/2
(Gr )po(d,a) = — [Zd2+’72(% ~z4 )? ] B [y o(d,a),h o(d,a) ] (87)
Zd DL
3y [z 2, 2 2] [ 72 2 2 ]
= +¥ 1z, —x 3L “- 2074z, -z 88
2o2ps LT (za—2a)” | | Y (20 ~24) (88)
I G R I B A G R [
YA - L' ] + 43d2 L! : ( )
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Toldi did not present this result, but following through the same line of analysis he used
to derive Gy yields exactly equation (89). I note that for L << z this almost reduces to
Loinger’s (1983) result, but has a leading factor of 3/2L' where he had 3/4. 1 believe
that this result is correct and that Loinger’s equation has a minor error.

For zero dip, the choice of a good weighting function made it possible to approxi-
mate all the inner product sums by simple integrals and to re-derive the simple, closed
form algebraic expressions found by Toldi. Is such a simplification also possible for the
non-zero case? Alas, the answer appears to be no; at least I have not been able to find
one. This is not a problem for implementation, since the inner-product sums used in
evaluating A , etc., are straightforward to evaluate numerically. What is lost is perhaps
some degree of insight provided by analyzing the form of an explicit solution.

WEIGHTING REVISITED

The choice of weights to use can be constrained. For the constant-slowness back-
ground, one can incorporate some knowledge of how the interval slowness and migration
slowness should be related. Specifically, if Am (a) equals some constant K everywhere,
one can expect that Aw (d) will also equal K everywhere. This implies that

[dz, [dr, Gy(da)=1. (90)
Similarly

[z, [ dz, Gr(d,) = 25 (91)
and

[z, [dz, Gy(a,a) = 0. (92)

These normalization conditions should be met by the G operators for any dip range,

and put some limits on what weights can be used.

I note first that Toldi’s operator, as given by equations (87) and (88) meets these
criteria, since

24 zg+L' /2 2q
d
Jtzo [ dr,ep@a)= [Z 1 (93)
0 2,-L" /2 0o “d
and

zq zg+L" /2 2]
fdza dz, Gp(d,a) = f2dza = 2z, (94)
0 z,-L' /2 0

so equations (90) and (91) are satisfied. The constraint on G is trivial here. Thus, the

weights a=h2+2? are good ones to use for the flat bed case, and whatever the general
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weighting formula is, it should reduce to this for #=0. Note that scaling the weights has
no effect, and that the units associated with the weights always cancel out and hence are
irrelevant.

For numerical experiments I have been using a weighting scheme with « propor-
tional to the traveltime, as given in equation 1. This is an obvious generalization of the
weights used for zero-offset, but I have not yet proven or disproven either analytically or
numerically whether these weights satisfy equations (90) to (92).

WORK LEFT TO DO

I have begun testing this theory numerically, but I do not present any results here
because I cannot present a good intuitive explanation for the physical significance of
some of the operator behavior I have seen in these tests, and cannot yet eliminate with
confidence the possibility that I am just seeing errors in theory or in programming. My
operator does numerically duplicate Toldi’s for flat beds (except for a constant scaling
factor that I have not yet tracked down).

When I trust my code more, I will need to test how well this operator makes rea-
sonable predictions. To do this I will generate simple synthetic data, introduce an
interval-slowness anomaly, measure the migration-slowness response, and see how well it
agrees with that predicted by the operator. When the forward modeling works satisfac-
torily, I will attempt inversion of synthetic data examples. Doing this inversion by
singular value decomposition on the operator will allow me to examine the singular value
structure and the model and data resolution matrices to gain a better understanding of
what can and cannot be resolved. Eventually, of course, I want to use the linear opera-
tor to find a gradient direction for an iterative inversion that would allow me to move

away from the assumption of constant background slowness.

There remain two final points [ want to mention. The Green functions derived
above will in general not be convolutional over either z, or z,. However, it is not
difficult to verify that for a laterally invariant background slowness, equation (19) is a
convolution over z,. This is intuitively reasonable; if nothing in the medium varies
laterally, the effect of an anomaly on a diffractor should not depend on where along the
line they are. In saying this, I assume that the weights o depend only on xry—z, and
that the operator is either the all-dip diffraction version or that the dip weights are
laterally invariant (constant structure along the line). This last assumption may not be
too useful in practice, but it makes possible examination of the transfer functions associ-
ated with these Green functions. So one of the things for me to do is to Fourier
transform the operator over z and examine the transfer functions.

I mentioned earlier that the matrix inversion used to derive the operator (equation
(7)) can be unstable. This is particularly a problem for steep dips and for very small
dips. One possible reason for this trouble is that W, T, and Y are not really a good set

of parameters to use in describing the traveltime pyramid; they are not independent

SEP-51



Fowler 83 Migration velocity analysis

enough. That is, because changes in these parameters tend to be well correlated, the
resulting matrix for inversion is nearly singular. A related problem is that W, T, and Y
have different physical units, so a change in measurement units from say, km to m,
scales the three parameters differently, and can change the condition number of the
matrix one wishes to invert. One way out of this problem is to scale the parameters so
that they have the same units and are of similar magnitude. Sherwood et al. (1986), for
example, scaled both depth and slowness to have units of traveltime in their inversion
scheme. One such scaling that appears natural to me here is to scale to units of slow-
ness, replacing T by T /2z; and Y by WY /2z;. I need to experiment to find out
whether such scaling helps, and whether this choice would be a good one.
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<& SATIRICAL ESSAY

No, no matter what people may
say, the romantic tribe is not about
to die out in our rational age.

One romantic voluntarily took
over a lagging collective farm and
made it into a leader. Another vol-
unteered to turn the desert into a
flowering garden. A third, not re-
treating in the face of difficulties,
is successfully fighting against cer-
tain negative phenomena in our
lives. And who but _romantics
could get up one fine day and
change their place ol residence en
masse and without ceremuay, tak-
ing_off_from_the South for the

orth, for example, just like that?
And not for the mists and the scent
of the taiga that you hear about in
songs, but to make a real contribu-
tion of their own and take a place
in the vanguard.

You want facts? Why, certainly,
here you are.

Once upon a time on the fertile
land of the Kuban, there lived a
research institute—the Scientific
Research Institute of Marine
Geophysics of the Soyuzmorgeo
(Ali-Union ine Geophysigcs
Association. Its numerous employ-
ees did not collect their pay for no-
thing; they tilled the rich soil of
science in the sweat of their brows
and even reaped some fruits.
Otherwise, the USSR Ministry of
the Gas Industry would never have
given the institute the responsible
assignment of developing and test-
ing a prototype of a linear pneumgy-
tic.soyrce for seismic work in oil
and gas exploration way up on the
continental sheif in" the Arctic
seas.

“We’ll - be happy to try!”
chorused the Kuban scientists.

we must point out that the
gcthysical %roblems involved

ren't simple. It seems to us that
it would Ec more convenient to
tackle them not amid the mellow-
ing influence of the citrus groves
on the Black Sea coast of the
Caucasus, but up where the bliz-
zards blow, the hummocks pile up
in the ice fields, and the storm
waves roar, that is, right up there
above the Arctic Circle. Therefore
we request that our institute, and
the whole Soyuzmorgeo Associa-

from our native Krasnodar Terri-
tory to the distant (and none too
comfortable for us southerners)
Murmansk Province.”

“Alogical, bold, and in some way
even romantic proposal,” the
higher-ups said in approval.

And soon, huddling up against
the cold north wind and rubbing
their instantly numbed ears with
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“We won’t let you down. However, .

tion along with it, be relocated
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their mittens, the fledgling far

. northerners from the Kuban ran

briskly down the ladder of the
plane that had landed them on the
Kola Peninsula.

Then the work got going, but be-
cause of the low temperature of the
surroundings, it didn't get going
any too fast. Oh no, you mustn’t
think the romantics lost their en-
thusiasm. It was just transformed
somewhat, to use a scientific term.
Evidently, under the influence of
those same unfavorable local wea-
ther conditions.

Here is what was written in the
document headed “Program of Re-
search and Development Work,”
approved back in 1983 by the gen-
eral director of Soyuzmorgeo, Ya.
Malovitsky: “...Preliminary test-
ing of the prototype (this refers to
the above-mentioned pneumatic
source—G. Ya.) will be carried out
at the Arctic test site, and final
testing is to be done in the fourth
quarter of 1985 on the continental
shelf in Pechorskaya Bay or in the
waters ui the Barents Sea. . .”

As we can sce, everything was in
order; the work was specified and
a deadline was sect. After some
time, however, it turned out to
many people’s surprise that the
noble tree of knowledge appa-

- Without Leaving the Bead

1 answer, not at all. They're noy’ ~ » ture of state budget funds amount-

such simpletons as that. The insti- -

. tute's report was approved by Gen-

eral Director Ya. Malovitsky, but

his deputy V. Utnasin issued a fake .~

X
certificate of completion of the .

project. Glibly reporting to the
higher-ups that the work had been
done with high quality and on
schedule, the northerners in re-
turn got warm congratulations on
their labor victory. And that, as the
reader can guess, portended a
bonus. It did indeed materialize.
A nice, round sum migrated from
the state treasury to the pockets of

our heroes.

However, it’s not without reason
that people say, “The truth will
out.” A commission descended on
the institute and immediately dis-
cerned, with the naked eye, glaring ~
deficiences both in the work itself
and in matters concerning person-
nel and finances. Representatives
of the RSFSR People’s Control
Committee and auditors from the
republic’s finance ministry ascer-
tained that the scientists had
failed to cope with their assigned
task, but that the laboratory staff
included ten more design en-
gincers and four more “just plain
designers” than the staff list called
for. Tt is still unclear what prob-
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rently growing in the northern soil
was a flourishing fake. Letus quote
the conclusion of the experts:
“The main task of the scientific re-
scarch and experimental design
work—to develop a linear pneuma-
tic source for carrying out seismic
exploration on the Arctic continen-
tal shelf—was not carried out by
the institute. The report contains
no results of any scientific research
directed at accomplishing the
main task.”

I foresee the reader’s question:
80 it turns out that the northern
settlers from the Kuban blew the
plan, to put it bluntly?

NORTHERNERS,
WERKE NOWHEZNERS

W
fron T el

lems they were working on, but
about 20,000 rubles were spent for
their upkeep. '
As for the piece of equipment
with which we are by now familiar,
alas, the outlined program of pre-
liminary testing was less than half

. completed. But what of that? The

tenderhearted chairman ' of the
commission, Chief Engineer Ya.
Protas of Soyuzmorgeo, and a rep-
resentative of the USSR Ministry
of the Gas Industry, B. Sidorov,
both amiably scrawled theirnames
on documents accepting the work
as completed. Thus they gave their
blessing to the unlawful expendi-

ing to 355,000 rubles and the pay-
ment of almost 10,000 rubles in
bonuses to the scientists at the
maring' Eeophxsics rescarch insti-
tute. at's not counting the
thousands spent by the clever
polar expedition members on rent-

ing a helicopter for trips to pearb
fishing lakes.

However, our real, heroic polar
expedition members will hardly be
pleased to hear us apply this name
thatis dear to our hearts to a group
of common, garden-variety frauds.
And therefore let us remove the
last veil of romanticism from their
brand-new fur hats and sheepskin
coats. There were no tests either
in Pechorskaya Bay or on the con-
tinental shelf in the Barents Sea.

While receiving the high supple-
menta ay for people working in
the far north, those I\Jn/ho were sup-
posed to he doing the testing sag
for weeks in Krasnodar and sunny
Gelendzhik. They forged boldly
ahead, one might say, in highly
comfortable conditions and with-
out leaving the beach.

“Well, what’s the big deal?
There’s sea up there and there's
sea down here. Ice hummocks?
What do ice hummocks have to do
with anything? You say we went
swimming and lay around sunning
ourselves? Well, you know, that
still remains to be proved. It’s true,
there were certain flaws and omis-
sions. We realize that, and we'll
correct the situation. We'll finish
the tests. No, not in the Barents
Sea (b-r-r-r!), but not in the Black
Sea either—see how conscientious
we are? We’ll move to the Azov or
the Caspian. By the way, it wasn’t
a bad idea to haul our imported
transport platform down there
from Murmansk, to the waters
around ancient Khazar. We shelled
out half a million for it. It’s a won-
derful gizmo—goes like crazy on
land and water both. But we didn’t
get it all the way to the Caspian
Sea; we stopped off at the Black
Sea, at Gelendzhik, out of habit.
So that’s where it is now, poor
thing. Let’s hope it doesn’t get
pulled to picces.”

Calm down, dear scientists. Go
casy on your nerves. Go swimming
and boating to your hearts’ con-
tentin Anapa or Sochi or Makhach-
kala or wherever you want. But just
don’t do it oa work time and at
government expense.

G. YASTREBTSOV.
Drawing by D. Agaev.
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