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Interval velocity estimation from beam-stacked
data

Biondo Biond:

ABSTRACT

Beam stacks, like local slant stacks from which they are derived, select data based
on the direction of wave propagation. The goal is to estimate the low-wavenumber com-
ponents of the velocity function from beam-stacked data using a tomographic approach.
The velocity estimation does not require picking the data but it is solved by searching
for the maximum of an objective function that measures how well the velocity model
predicts the beam-stacked data.

The inversion was successful in estimating the velocity function in a horizontally
layered medium both from synthetic data and from field data. The results of this
simple inversion indicate directions for future research into method’s application to
two-dimensional velocity estimation.

INTRODUCTION

A good estimate of interval velocity is required for successful imaging of the earth sub-
surface by seismic migration. In the presence of lateral variations in velocity and structure
in the geology, conventional velocity analysis using stacking velocities is inadequate to re-
construct the velocity model.

Various methods to improve the estimate of velocity have been proposed; most of these
are based on a tomographic approach that reconstructs the velocity model from measures
of traveltimes in the data. Tomographic methods can resolve only the lower-wavenumber
components of the velocity model because these methods are based on measures of trav-
eltimes, which are integral measures of velocity. The method that I propose in this paper
is based on a tomographic reconstruction of the velocity model and has the same limita-
tions. In practice this limitation is irrelevant since, in order to properly image the reflectors,
migration needs a smoothed version of the true velocity function.

Conventional tomographic inversion (Bishop et al., 1985) is performed in the following
two steps: first, picking traveltimes and reflecting horizons; and second, searching for the
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Biond: 14 Velocity estimation using beam stacks

velocity model that minimizes the mismatch between the observed traveltimes and the trav-
eltimes predicted by the model. Sword (1986) presented a tomographic inversion that used
events picked from locally slant-stacked data. He substituted the picking of ray parameters
in the local slant-stacks’ domain for the picking of horizons, with the important advantage
that the picking procedure can be then executed automatically.

The velocity estimation that I propose is based on beam-stack transformation of data.
The method can be related to Sword’s inversion, but it uses beam stacks instead of local
slant stacks and, more importantly, does not require the picking of events. I prefer to avoid
picking because when the data are contaminated by noise, picking becomes difficult, and
the picking errors might not follow the Gaussian distribution, on which the least-squares
inversion to the velocity model is based (Rothman, 1984). On the other hand, using all
the transformed data for the inversion, without picking events, increases the CPU-time and
storage requirements of the algorithm.

Instead of minimizing the mismatch between the picked events and the events predicted
by the velocity model, I try to maximize the amplitude of beam-stacked data at the trav-
eltimes predicted by the velocity model. In this respect my inversion method resembles
more the methods presented by Toldi (1985) and Fowler (1985), who maximize the stacking
power as a function of stacking velocity and migration velocity. Beam stacks depend on
the data more locally than do stacking velocity and constant-velocity migration panels, and
therefore beams stacks are more appropriate for the localization of velocity anomalies.

BEAM STACKS

The proposed velocity estimation is carried out in the beam-stacks’ domain. Beam
stacks are a variation of local slant stacks (Harlan and Burridge, 1983; Sword, 1984) and
are presented in another paper in this report (Kostov and Biondi, 1987). Beam stacks differ
from local slant stacks because the stack-trajectory is hyperbolic instead of being a straight
line.

For velocity analysis, beam stacks have the useful feature of selecting those waves gen-
erated and recorded at assigned surface locations and propagating in given directions. A
beam is determined by the shot location and the receiver location together with the shot
ray parameter and the receiver ray parameter. For each beam the value of beam stacks as
a function of traveltime depends on the velocity model along the beam path; this value also
depends on the geometry of the reflectors. By considering several beams traveling within
a region one can reconstruct the velocity model from the information provided by beam
stacks.

To explain how the beam-stacked data are related to the velocity function I consider a
shot profile recorded on a horizontally stratified Earth. In this case the shot ray parameter
is equal to the receiver ray parameter and the beam stacks of a shot profile are defined as
a function of traveltime, the ray parameter, and the recording location.

Figure 1 shows a shot profile from a marine survey in the Gulf of Mexico. In the area the
geology is flat and lateral variations in velocity are mild; thus the assumption of horizontally
layered medium is approximately satisfied.

Figure 2 shows a beam-stack decomposition of the profile shown in Figure 1, for a fixed
ray parameter. Ideally, beam stacks should select only the reflected energy arriving at the
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FIG. 1. Shot profile recorded in the Gulf of Mexico.
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FIG. 2. Beam stacks of the profile shown in Figure 1, for a fixed ray parameter. The
energy is localized in a wedge-shaped area around the peaks; this area corresponds to the
reflections traveling with the specified ray parameter. The traveltime and the receiver-offset
of the peaks is dependent on the velocity model.
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surface with the specified ray parameter and the result of the stacks should be a sequence of
peaks in correspondence to each reflection. In practice, the resolution of beam stacks is finite
and the peaks are smeared along the Fresnel zone of the reflections; the smear increases with
traveltime because the Fresnel zone becomes wider. In the beam stacks shown in Figure 2
the energy is thus localized in a wedge-shaped region around the peaks. In the transformed
profile there are also some aliasing artifacts caused by the strong arrivals of head waves at
large offsets.

The paths of the beams arriving at the surface with the same ray parameter are sketched
in Figure 3. The traveltimes along the beams, and the receiver locations at which the the
beams arrive, are the traveltimes and the receiver offsets of the peaks in beam stacks. Since
the beam paths and the traveltimes along the beams depend also on the velocity function,
the positions of the peaks are functions of the velocity model. The true velocity model
predicts exactly the traveltimes of the peaks, for every receiver location and ray parameter.
The inversion method described in the next section searches for the velocity model that
best predicts the peaks in the beam-stacked domain.

shot receivers

FIG. 3. The paths of the beams arriving at the surface with the same ray parameter. The
beam paths and the traveltimes along the beams depend on the velocity function.
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Biondi 18 Velocity estimation using beam stacks

THE INVERSION METHOD

The proposed interval-velocity inversion searches for a velocity model that best explains
the beam-stack transformed data. The basic principle of the inversion is a tomographic
fitting to the beam-stacked data of the traveltimes along the beams.

Figure 4 shows the path of a beam that starts from the shot at location sg with ray
parameter p,, bounces on a segment of reflector, and travels to the surface to arrive at the
receiver location ro with ray parameter p,. The beam path and the traveltime along the
beam are functions of the velocity model. The beam path can be determined by ray tracing
of the down-going ray and the up-going ray until they meet, and the traveltime ty is the
integral of slowness along the trajectory; thus ty = ty(so,r0,ps,pr). If the velocity along
the beam path is correct, and there is a reflector at the position at which the down-going ray
meets the up-going ray, the value of Beam(so,ro,tv (0,70, Ps,Pr),Ps,py) is different from
zero. This value of the beam-stacked data is dependent on the strength of the reflector on
which the beam bounced and on the angle of reflection. On the contrary, if the velocity
along the beam path is wrong, the value of the beam stack at the predicted traveltime ty
is approximately zero. The value of the beam-stacked data at the predicted travel time ty
is thus a measure of the correctness of the velocity model along the beam path.

When all the beams in the dataset are considered, the inversion can be formulated as
the solution of the non-linear optimization problem of finding the maximum, with respect

shot receiver
So Fo

Ps Pr

reflector

FIG. 4. The path of a beam that starts with ray parameter p, from the shot location so,
bounces on a reflector, and arrives with ray parameter p, at the receiver location ro. The
beam path and the traveltime along the beam are functions of the velocity model.
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to the velocity model V' (z, z), of the total energy

E(V) = ZZZ Z [Beam(so,’O,tV(SO, "O,Ps:pr),peapr)]z . (1)

80 To Ps Pr

If we have a good initial guess of the velocity model, as we hope might be obtained
by use of conventional velocity analysis, the optimization problem can be efficiently solved
with a gradient algorithm. The implementation of a gradient algorithm requires that the
gradient of the objective function be computed with respect to the model. The predicted
traveltimes ty along the beams are a function of velocity, and the value of the objective
function depends on the predicted travel times ty. It is therefore natural to express the
gradient of the objective function as

dE(V) _dE(V) dty .
v =~ dty dvV’ (2)

where the derivatives are computed at fixed sg, o, ps, and p,.

The first term on the right side of equation (2) is easily computed from the beam-stacked
data with a finite-difference approximation of the derivative operator, and represents the
interaction of the inversion algorithm with the actual data. The second term of equation
(2) is more difficult to compute and will require a sophisticated ray tracing. The difficulties
arise because traveltime is a function of the velocity model in two ways: directly, as the
integral of the slowness along the beam path, and indirectly through the beam path itself.

In the examples presented in this paper the gradient of traveltime with respect to the
velocity model was computed by use of finite differences. I perturbed the velocity model and
computed the induced perturbations in the traveltimes. This procedure is accurate but it
is too expensive because it requires a new ray tracing for each perturbed model parameter.
I would rather find a more efficient way for computation of the gradient.

Among the several gradient algorithms for the solution of a non-linear optimization
problem, a classic version of the conjugate gradient algorithm, derived by Polak-Ribiere

(Luenberger, 1984), was chosen. This is an efficient method for the solution of nonquadratic
problems.

A priori assumption of the velocity-model’s smoothness

A tomographic inversion can resolve only the lower wavenumbers of the velocity model
because it is based on traveltimes, which are integral measures of velocity. A common
approach for dealing with the poorly determined components of the velocity model is to
impose a smoothness condition on the velocity function during the inversion procedure. The
smoothness condition is usually incorporated in the algorithm by the addition of a penalty
term to the objective function. I chose to use as a penalty term the sum of the squares of
the first derivatives of the velocity function. When this smoothness condition is added to
the objective function in equation (1), the objective function of the problem becomes

v \? av\?
= - “a - z ’ 3
a)=5v) - L3 (3;), - > = (%), 3)
where 1 is the index over model velocities, and A, and A, are constants that determine the

strength of the smoothness assumption. This approach has some drawbacks that will be
discussed in the last section.
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RESULTS OF ONE-DIMENSIONAL INVERSION

A layered-medium synthetic example

I have tested the proposed inversion method on simple synthetic data. Figure 5 shows
the synthetic shot profile that I used as data for the inversion. The profile was generated
by use of a finite-difference modeling program and with the assumption of a horizontally
stratified medium composed of five layers. When the data was inverted, the stratified
medium was assumed to be composed of 140 layers, each 5 meters thick.
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FIG. 5. The synthetic shot profile that I used as data for the testing of my inversion
algorithm. The earth model is a stratified medium composed of five layers. The profile was
generated with a finite-difference modeling program.

Because the model is laterally homogeneous the take-off angle and the arrival angle
of the beams are equal. Therefore I decomposed the shot profile only into receiver ray
parameter components; the resulting beam stacks form a data cube. The three axes of the
cube are the time o, the receiver location ro, and the receiver ray parameter p,.

In the practical implementation of the inversion algorithm I computed the beam stacks
for 18 receiver locations, 10 ray parameter values, and at all the discrete-time values. I also
precomputed the square of the beam-stacks’ value and slightly smoothed the stacks along
the time axis.

Figure 6 shows the contour plot of a slice, taken at constant ray parameter, of the beam-
stack data cube that I used for the inversion. The traveltime curves as a function of the

SEP-51



Biondi 21 Velocity estimation using beam stacks

Recceiver offset (m)

0 200 400 600 800

') { 1 | |
= 0]
s o
0]
w .
D W
& NS

—
bh_ \

FIG. 6. Contour plot of a slice of the beam-stacks data cube, taken at constant ray pa-

rameter p,. The traveltime curves are overlaid on the contour plot for 20 iterations of the
inversion algorithm.

receiver location, for 20 iterations of the inversion algorithm, are superposed on the contour
plot. Figure 7 shows the results of 20 iterations of the velocity-inversion algorithm, starting
from an initial guess of velocity linearly increasing with depth. The true velocity model is
drawn with a dashed line and the result of the final iteration is drawn with a thicker line.

The result of the final iteration is a smooth approximation of the true velocity model.
The result is smooth because the high-wavenumber components of the velocity model are
unresolved by the inversion, and because I imposed a smoothness condition on the velocity
function; a penalty term was added to the objective function, as shown in equation (3).
Figure 6 shows that the traveltime of the peaks in the beam-stacked profile are fairly well
predicted by the final velocity model.

A field-data example

I tested the proposed velocity inversion also on a field shot profile, using the data
shown in Figure 1. The inversion was carried out with assumption of a horizontally layered
medium; this assumption is approximately satisfied by the geology of the region where the
profile was recorded.

I computed the beam stacks for 48 receiver locations, 20 ray parameter values, and at
all the discrete-time values. When a stratified Earth composed of 500 layers, each 10 meters
thick, was assumed, the inversion algorithm converged to a final result after 50 iterations.
Figure 8 shows the result of one iteration out of ten iterations; the result of the last iteration
is drawn with a thicker line. The velocity of the initial model is equal to the velocity of water
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FIG. 7. The result of 20 iterations of the iterative-inversion algorithm. The starting guess
is a velocity function linearly increasing with depth. The true velocity function is drawn
with a dashed line and the result of the last iteration is drawn with a thicker line. The
velocity model is composed of 140 layers, each 5 meters thick.

through the depth of the sea bottom, and increases linearly with depth in the subsurface.

Figure 9 shows the contour plot of beam stacks at constant ray parameter. A traveltime
curve is superposed on the contour plot every 10 iterations of the inversion algorithm. All
the peaks of the beam stacks except one are well fitted by the traveltime curves. The
exception corresponds to a reflection that I think is a water-bottom peg-leg.

I did also a conventional stacking-velocity analysis on the same field profile, to verify the
results of the inversion algorithm. Figure 10 compares the root mean square (rms) velocity
profile obtained by use of stacking-velocity analysis to the rms velocity profiles computed
from the results of the iterative inversion. The velocity function obtained by use of stacking
velocities is drawn with a dashed line, and the result of the last iteration is plotted with a
thicker line.

Figure 11 compares the interval-velocity profiles as a function of the zero-offset time.
The interval-velocity function was computed from the rms velocity function, obtained from
stacking velocities, by use of Dix’s formula. Also in this Figure the dashed line is the result
of the conventional method, and the result of the last iteration of the velocity inversion is
plotted with a thicker line.

The resemblance between the velocity functions obtained by use of conventional velocity
analysis and the velocity functions obtained by use of the proposed velocity inversion con-
firms the soundness of the new method. I think that these results are promising although
the inversion problem was simple.
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FIG. 10. Comparison between the rms velocity profile obtained by stacking-velocity analysis
and the rms velocity profile computed from the results of the velocity inversion. The result
of conventional velocity analysis is drawn with a dashed line, and the result of the last
iteration is plotted with a thicker line.
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FIG. 11. Comparison between the interval-velocity function computed from the rms velocity
profile (obtained by use of stacking velocity analysis) and the results of the velocity inversion.
The profiles are plotted as a function of the zero-offset traveltime. The dashed line is the
result of conventional velocity analysis, and the result of the last iteration is plotted with a
thicker line.
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FIG. 8. The results of 50 iterations of the iterative-inversion algorithm. The velocity
function is plotted every 10 iterations. The starting guess is a velocity function linearly
increasing with depth. The result of the last iteration is drawn with a thicker line. The
velocity model is composed of 500 layers, each 10 meters thick.
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FIG. 9. Contour plot of a slice of the beam-stacks data cube, taken at constant ray pa-
rameter p,. A traveltime curve is overlaid on the contour plot every 10 iterations of the
inversion algorithm.
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FUTURE INVESTIGATIONS

The results of one-dimensional velocity estimation using the proposed method are sat-
isfactory but the purpose of the method is a two-dimensional velocity estimation. Two-
dimensional inversion is more difficult than one-dimensional inversion and I think that my
algorithm needs some improvements before it can successfully solve the problem. The as-
pects of the problem that I will study more in depth are discussed in the following sections.

Interactive migration of beam stacks

I would like to implement an algorithm for the migration of beam stacked data. In
principle, the migration of beam stacks should be fast, although not extremely accurate.
Beam stacks migration can be performed by use of ray tracing to find the beam paths
and summation to image the contribution of each beam (Milkereit et al., 1986). A fast
prestack-migration algorithm could be very useful for the interactive guidance of the inver-
sion algorithm.

Objective function

The objective function that I proposed in equation (3) is simple, but has some important
drawbacks. The major one is that the value of the objective function is too sensitive to the
artifacts of local beam stacks. Local beam stacks have a finite spatial and directional
resolution, so the stack energy is not zero around the peaks. Using the objective function
in equation (3) we sum also the energy of these artifacts and we force the travel times to
fit the artifacts as well as the correct peaks in the stacks. Because of these effects, the
inversion needs a strong dumping of the velocity model to prevent the results from having
an oscillatory behavior. I think that the objective function should take into account the

finite resolution of beam stacks and exploit the knowledge of the expected shapes of the
peaks in beam stacks.

Parameterization of the velocity model

In the section in which I described the inversion method I also presented a method for
constraining the velocity model with a smoothing condition. A penalty term that decreases
as the velocity function becomes smoother can be added to the objective function.

This approach has the advantage of being straightforward and easyly implemented but
also has some disadvantages. The optimization problem is solved for many more unknown
parameters than are neeeded to describe a smooth velocity model, and therefore the cost
of each iteration is higher than is necessary. Furthermore the penalty term makes the
optimization problem ill-conditioned and thus it often prevents the iterative inversion from
converging to a model that predicts all the events in the data. Some components of the
velocity model that are well determined in the data can be unresolved by the inversion.
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If the unknown velocity model could be parameterized in such a way that the smoothness
constraint were taken explicitly into account, I could use a smaller number of parameters
and avoid the necessity of a penalty term in the objective function. A possible alternative
to the conventional approach might be the representation of the velocity function with use

of finite elements (Zhu and Brown, 1987) or overlapping smooth basis functions (Van Trier,
1987).

A priori assumptions

A priori assumptions can be helpful for driving the inversion algorithm to reconstruct
some of the poorly determined components of the velocity model. Continuity of some specific
reflectors is often a possible assumption. I would like to incorporate into my inversion scheme
the capability of constraining some reflectors to be continuous. The desired reflectors can be
interactively picked from the result of a preliminary migration of beam stacks. I think that
comparing the results of some trial inversions, each of them based on different constraints
on the geometry of the reflectors, might be helpful in the discrimination between reflections
that are deformed because of geologic structure and reflections that are deformed because
of velocity anomalies.

The continuity assumption can be incorporated into the objective function by an addi-
tional term that rewards the continuity of reflectors. Events corresponding to a continuous
reflector lie on a continuous curve in the beam-stacks’ domain; rewarding the continuity of
this curve reflects the assumption of continuity of the reflector.

CONCLUSIONS

The one-dimensional results of the proposed algorithm show that the inversion of beam-
stacked data is a promising method for estimating the velocity model. The next step is to
apply the method to a two-dimensional velocity estimation.
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