Reflection tomography: vees in midpoint-offset
space

Marta Jo Woodward

ABSTRACT

In reflection seismic experiments, localized velocity anomalies cast shadows on un-
derlying reflectors—creating vee-shaped time-shift patterns in midpoint-offset space.
Ray-theoretic, tomographic inversion of reflection seismic data for small velocity anoma-
lies typically consists in the four-step identification of these patterns. A background
velocity model is assumed; vees for point velocity anomalies at all midpoints are found
by ray-tracing through the model; anomalous traveltimes are determined by picking
crosscorrelation peaks, and the picked time shifts are backprojected into midpoint-
depth space through integration over all possible vees on the midpoint-offset plane.
This paper proposes two modifications to this four-step scheme. First, the reconstruc-
tion of small velocity anomalies is reformulated as an optimization problem. By shift-
ing traces underlying precalculated vee-patterns up and down in time to maximize a
semblance objective function, the algorithm estimates traveltime and velocity anoma-
lies simultaneously—without intermediate picking. Second, wave effects noted through
comparison of equivalent wave and ray-theoretic data sets are incorporated into the
algorithm through modification of the ray-trace derived vee-patterns. Smearing the
vees in midpoint and damping them in offset yielded improved inversion results for
wave-theoretic data.

INTRODUCTION

In reflection seismic experiments, localized velocity anomalies cast shadows on under-
lying reflectors—creating anomalous time-shift patterns on expected arrival horizons in
midpoint-offset space (Kjartansson, 1979; Ottolini and Rocca, 1982; Fulton and Darr, 1984;
Claerbout, 1985). Figure 1 shows ray-theoretic shadows on horizontal and dipping pla-
nar reflectors, generated by point-anomalies in a constant velocity background field. The
vee-shaped patterns open and close as the distances between the anomalous points and
the reflecting surfaces increase and decrease. More complicated vees may be calculated
or ray-traced through more complicated background velocity models for more complicated

reflector structures.
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FIG. 1. The upper plots show point velocity anomalies (A, B and C) in a constant velocity
background field. The lower plots show the ray-theoretic shadows cast by the anomalies on
underlying horizontal and dipping reflectors. The shadows appear as traveltime perturba-
tions in midpoint-offset space.

Ray-theoretic, tomographic inversion of reflection seismic data for small velocity anoma-
lies typically consists in the four-step identification of these vee-shaped shadows in midpoint-
offset space. A background velocity model is assumed; vees for point velocity anomalies at
all midpoints and depths are calculated or ray-traced through the model; anomalous travel-
times are picked by crosscorrelating traces on normal moveout corrected common midpoint
gathers; and, finally, the picked time shifts are integrated over all possible vees on the
midpoint-offset plane (Kjartansson, 1979). This last, backprojection step corresponds to
a generalized inverse Radon transformation from data (midpoint-offset) space to physical
(midpoint-depth) space; a rho filter must be applied to complete the inversion (Fawcett and
Clayton, 1984).

This paper proposes two modifications to the four-step scheme described above. The
first is a reformulation of tomographic reconstruction as an optimization problem. By
shifting traces underlying precalculated vee-patterns up and down in time to maximize
a semblance objective function, the algorithm estimates traveltime and velocity anoma-
lies simultaneously—without intermediate picking (following Ronen and Claerbout, 1985).
The second modification is an attempt to design vee-patterns for wave-theoretic tomogra-
phy. Two data sets are examined for a single reflection seismic experiment. One is wave-
theoretically correct, generated by a wave-equation modeling program (Elastic2d, courtesy
of Peter Mora); the other is the straight-ray equivalent of the former. Differences between
the two data sets are noted and used to adjust ray-theoretic vee-patterns for wave-theoretic

data.

SEP-51



Woodward 3 Tomography

REFLECTION SEISMIC EXPERIMENT

Figure 2a shows the velocity model used to generate the reflection seismic data sets
considered in this paper. Five anomalous low velocity regions are embedded in a constant
velocity medium overlying a horizontal, planar reflector at 625 m. From left to right across
the page: the average velocities of the squares are 76, 83, 76, 83 and 89 percent of the
background field (2100 m/s); the widths of the squares are .3, .6, .2, .6, and 1.2 times the
dominant source wavelength of the experiment (84 m). The anomalous regions are tapered
from higher to lower velocities from exterior to interior, size permitting. They are small for
the purposes of minimizing raybending and of testing the resolution of the method.

Figure 2b illustrates the wave-theoretic data set created by wave-equation modeling a
reflection seismic experiment over the given velocity field. A zero-offset section is shown
(windowed in time around the reflector horizon), along with a time slice through the normal
moveout flattened reflection in midpoint-offset space. The trace spacing and near haif-offset
are both 12.5 m; the source wavelet’s dominant frequency is 25 Hz. The ray-theoretic
equivalent of Figure 2b is shown in Figure 2c. Constructed by shifting traces with straight
ray-trace derived time delays, the data set exactly fits the infinite frequency, straight ray
assumptions of ray-theoretic tomography.

There are three major differences between the wave-theoretic and straight-ray-theoretic
data sets. The first is the contamination of the former with hyperbolic artifacts—generated
by reflections off the anomalous velocity zones. Prominent, backscattered, diffraction hyper-
bolas slice through the reflector in Figure 2b, disguising the vee-patterns on the midpoint-
offset plane. This feature makes picking traveltime anomalies through crosscorrelation of
traces on common midpoint gathers impossible. Hyperbolic events also originate on the
reflector itself—appearing at the edges of the anomaly-induced time sags on the zero-offset
section. They correspond to the reflection of energy scattered downwards by the square
velocity anomalies.

The second difference between the data sets is the considerable broadening of the vee-
patterns on the wave-theoretic time-slice panel. This phenomenon results from the interac-
tion of the bandlimited source wavefield with the anomalous velocity regions. Since the first
half-wavelength of any source-receiver event is influenced by an elliptical region surrounding
the intervening straight-ray path (in a homogeneous medium), an anomalous velocity re-
gion influences more source-receiver pairs than predicted by tracing rays (Hagedoorn, 1957;
Woodward, 1986). Figure 3 shows overlapping elliptical regions calculated for two mid-
points separated by 125 m; the dominant source wavelength and reflector depth correspond
to those of the experiment described above. The square anomaly is 50 m on a side. While
ray theory predicts detection of the anomaly only at the midpoint on the left, wave theory
implies its detection at the midpoint on the right.

Finally, the time shifts on the wave-equation data set are smaller than those on the ideal,
ray-theoretic equivalent. Because the anomalous zones are on the order of a wavelength or
less in size, they are generally smaller than the Fresnel zone of the source wavefield at their
depth—and only weakly detected. This point is clarified through comparison of the time
shifts below the second and fourth anomalous velocity zones. While the squares are of the
same width and magnitude, their different depths imply different effective Fresnel zones.
The Fresnel zone of the source wavefield is larger at the deeper, second anomaly—and the
latter’s related time shift is smaller. This phenomenon is known as wavefront healing.
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FIG. 2. A reflection seismic experiment. (a). The velocity model in midpoint-depth.
(b). The wave-theoretic data set: a windowed zero-offset section in midpoint-time, and
a time slice through the normal moveout corrected reflector in midpoint-offset. (c). The
ray-theoretic data set: plots as described in (b).
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FIG. 3. Ray-paths connect- e
ing source-receiver pairs for two
neighboring midpoints are shown
as dashed lines. The ellipti-
cal regions influencing the first
half-wavelength of correspond-
ing bandlimited source-receiver
events are shown as heavy solid
lines. Ray theory predicts detec-
tion of the square anomaly only
at the midpoint on the left; wave ;
theory predicts its detection at 500
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INVERSION FOR VELOCITY ANOMALIES

Ray-theoretic vees

The first step in the inversion of a reflection seismic data set for small velocity anomalies
is the determination of the vee-patterns—the association of a time-shift shadow in midpoint-
offset space with each possible perturbation location in physical, velocity space. For this
application the background field was discretized into 12.5 m by 12.5 m squares—constraining
the possible perturbation locations to fifty discrete depths. Representative vee-patterns are
shown in Figure 4: the upper plot shows the shadow cast in midpoint-offset space by an
anomaly at the surface of the model; the lower plot shows the shadow for an anomaly half-
way between the surface and the reflector. In both cases, the apex of the vee points to the
position of the velocity anomaly on the midpoint axis. The intensity of the vees at each
midpoint-offset position is proportional to the path length travelled by the corresponding
ray through the anomaly—and consequently to the time shift expected at that position. The
fifty templates were normalized to a maximum relative time-shift value of one. Changing
the magnitude of a velocity anomaly corresponds to multiplying a vee-pattern by a scale
factor.

Model estimation by semblance optimization

Tomographic reconstruction of velocity perturbations typically inverts picked traveltime
anomalies by backprojecting them over vees, normalized (as above) for path length. Because
the strong diffraction events in Figure 2b preclude the successful picking of vee-pattern time-
delays, an alternative method obviating picking was found. Ronen and Claerbout (1985)
proposed statics estimation by stack-power maximization for data sets with similarly low
signal-to-noise ratios. Taking normal moveout corrected data, they shifted traces corre-
sponding to a single shot-receiver position up and down in time to maximize stack power
over the section—estimating the statics model and the time shifts simultaneously. They
iteratively swept across midpoint-offset space, imposing the best shift for each shot-receiver
location as it was calculated. Since the statics problem is a special case of tomographic
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FIG. 4. Ray-theoretic vees:
the upper pattern illustrates the
time-shift shadow cast in mid-
point-offset space by a single,
square anomaly positioned at the
surface of the model of Figure 2a;
the lower pattern illustrates the
shadow for a similar anomaly
positioned half-way between the
surface and the reflector.

midpoint

offset

inversion—constrained to the reconstruction of perturbations in the top-most layer of a ve-
locity model—their method is readily extended to the full reflection tomographic problem.
Instead of shifting only traces underlying vees corresponding to velocity anomalies at the
surface (the upper plot in Figure 4), this application requires shifting traces underlying
vees for anomalies at all depths. As in the statics problem, the tomographic model m is
parameterized not in terms of anomalous velocities, but in terms of time shifts accruing
to discrete anomaly positions—i.e., as weights applied to vee-patterns. For this exercise
there were 3200 model parameters—corresponding to vee-patterns for 50 possible depths
positioned at 64 possible midpoints.

Perhaps because of the increase in the number of model parameters in going from the
statics problem to the full tomography problem, two changes had to be made to the statics
optimization algorithm before it would work for the tomographic case. First, the objective
function Q(m) was altered from stack power. Both a semblance-over-offset function (used
by Toldi, 1985, for his optimization-theory formulation of velocity analysis):

) — (S d(t: + Atg;(m), he, 5))2
) = X.:Z:: ¢ (d(t; + Atej(m), hi, ;) g

and a semblance-over-reflector function (suggested by Stew Levin):

B (Ej Yk d(ti + Atej(m), by, yj))z
m) = 2.: 5; S (d(ti + Atkj(m), ki, ;)

were tested. The variables ¢, y, and h refer to time, midpoint and offset in a data set, d—
normal moveout corrected according to the background velocity field. The term Atg; (m)
describes the time shifts at hj and y; corresponding to an anomaly model m. While the

two objective functions were not compared rigorously, the semblance-over-reflector formula
seemed to produce faster convergence.

(2)

Second, the search scheme was modified. Instead of imposing objective-function maximiz-
ing shifts as they were calculated at each location, a combination of the steepest-ascent and
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conjugate-gradient methods was used (Gill et al, 1981). The gradient of the objective
function with respect to the model parameters was calculated at each iteration by finite
difference: at each midpoint position, vees corresponding to each depth were sequentially
laid over the midpoint-offset plane; the underlying traces were shifted in time according to
the magnitude of the vee at their position; the change in the semblance-over-reflector func-
tion was interpreted as 3Q/dm (m describing the vee-pattern being applied). Time-shifts
were imposed on the data as steps in the gradient direction—or in a weighted combination
of the gradient direction and the previous directions.

Ray-theoretic data set: ray-theoretic vees

The result of applying the inversion method described above to the ray-theoretic data
set is shown in Figure 5. From top to bottom, the plots show: the zero-offset section after
fourteen iterations (where convergence stopped, having increased the objective function by
33%); a time slice through the data set at the same time as in Figure 2c; the total time
shifts applied in midpoint-offset space, and the inversion result produced by backprojecting
these time shifts into midpoint-depth space. The method has done a good job at both
defining the velocity anomalies of Figure 2a, and at removing the vee-shaped time sags in
midpoint-offset space. Finite-aperture induced artifacts are apparent as diagonal smears
across the inversion; the prominent sidelobes should be removed through application of a
derivative-like rho filter (Fawcett and Clayton, 1984).

Wave-theoretic data set: ray-theoretic vees

The result of applying the inversion method to the wave-theoretic data set is shown in
Figure 6, the plots paralleling those of Figure 5. For this case, convergence stopped at the
seventeenth iteration, after a 21% increase in the objective function. While the method
has succeeded in removing the vee-shaped traveltime anomalies, it has done a poor job of
defining the velocity perturbations of Figure 2a. This failure is an expected result, given the
large differences between the ideal, ray-theoretic data set and its wave-theoretic equivalent.

Wave-theoretic vees

To improve the tomographic inversion of the wave-theoretic data set, the ray-theoretic
vees were modified according to differences noted between wave and ray-theoretic data.
First, they were altered to reflect Fresnel zone phenomena. The source field for the re-
flection seismic experiment considered in this paper was a spherical wave; the larger the
angle subtended by an anomaly along an expanding spherical wave, the closer its resultant
time shift will be to its ray-theoretic time shift. As a consequence of this reasoning, the
magnitudes along the ray-theoretic vees were multiplied by the ratio of the anomaly cross-
section to the Fresnel zone of the expanding source wave, as measured at their intersection.
(Actually this seemed to damp far offsets drastically; at the suggestion of John Etgen the
factor was replaced by its square root.)

Second, the ray-theoretic vees were broadened. For each offset on each vee, the di-
mensions of the elliptical region influencing the first half-wavelength of a source-receiver
event were calculated. The vees were then linearly tapered along midpoint from a ray-
theoretic high point (corresponding to that midpoint position where the source-receiver ray
intersected the anomaly), out to a midpoint with an ellipse just grazing the anomaly.
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FIG. 5. Ray-theoretic data set inverted for velocity anomalies using ray-theoretic vees.
From top to bottom the plots show: a zero-offset section; a time-slice panel; the time-shift

corrections applied by the inversion; the backprojection of the applied time shifts to mid-
point-depth space.
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FIG. 6. Wave-theoretic data set inverted for velocity anomalies using ray-theoretic vees.
From top to bottom the plots show: a zero-offset section; a time-slice panel; the time-shift

corrections applied by the inversion; the backprojection of the applied time shifts to mid-
point-depth space.
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Figure 7 illustrates two pseudo-wave-theoretic vees created in this manner. As in Fig-
ure 4, the upper plot shows the wave-theoretic shadow cast in midpoint-offset space by
an anomaly at the surface of the model; the lower plot shows the shadow for an anomaly
half-way between the surface and the reflector.

midpoint

FIG. 7. Wave-theoretic vees:
the upper pattern illustrates the
time-shift shadow cast in mid-
point-offset space by a single,
square anomaly positioned at the
surface of the model of Figure 2a;
the lower pattern illustrates the
shadow for a similar anomaly
positioned half-way between the
surface and the reflector.

offset

offset

Wave-theoretic data set: wave-theoretic vees

The result derived through application of the wave-theoretic vees to the wave-theoretic
data set is shown in Figure 8. The plots correspond to those of Figures 5 and 6. For this
case, convergence stopped after twenty-two iterations, with a 13% increase in the objective
function. The wave-theoretic vees have done a better job of inverting the data set for small
velocity perturbations than their ray-theoretic counterparts. The largest (1.2)) anomaly
is resolved very well; the (.6)) anomaly immediately to its left is resolved moderately
well—though shifted up slightly due to its interaction with its larger neighbor. The deeper
(.6)) anomaly is clearly indicated; the remaining two are questionably apparent. The vees
corresponding to the deepest anomalies do not seem to fit the data well, having produced
a ridge and then a relatively featureless zone in the bottom quarter of the inversion. The
other artifacts are similar to those of Figure 5—aperture-induced smears diagonally crossing
the picture. Again a rho filter should be applied to the result.

CONCLUSIONS

Successful tomographic reconstruction of small velocity anomalies depends on the correct
identification of anomalous traveltimes. For noisy data sets, the independent determination
of anomaly-induced time shifts may be difficult or impossible. The formulation of tomog-
raphy as an optimization problem solves the picking problem by estimating traveltime and
velocity anomalies simultaneously: time shifts are constrained to agree with a model.

Application of ray-theoretic tomography to reflection seismic data sets fails when ve-
locity perturbations are on the order of the dominant source wavelength—when wave ef-
fects dominate ray theory. Wave effects may be incorporated into ray-theoretic tomog-
raphy through modification of the precalculated vee-patterns describing the track of an
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FIG. 8. Wave-theoretic data set inverted for velocity anomalies using wave-theoretic vees.
From top to bottom the plots show: a zero-offset section; a time-slice panel; the time-shift

corrections applied by the inversion; the backprojection of the applied time shifts to mid-
point-depth space.
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anomaly’s shadow across midpoint-offset space. In this study, smearing vee-patterns in
midpoint and damping them in offset yielded good resolution of anomalies on the order of
a half-wavelength. These modifications were empirically determined and a more reasoned
approach to their design needs to be developed.
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