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Elastic wavefield inversion of
reflection and transmission data

Peter Mora

ABSTRACT

Elastic inversion of seismic data can be performed by finding the earth parameters
(P- and S-wave velocities and density) that minimize the square error between the
wavefield computed using this model and the observed wavefield (Tarantola (1984) and
Mora (1986a)). The resultant model is a maximum probability solution provided the
assumptions implied using least squares, namely Gaussian probability distributions of
the data and model parameters, are valid. This is not a bad assumption considering the
elastic inversion algorithm assumes the elastic wave equation and therefore accounts for
S-waves, mode conversions, head waves and rayleigh waves etc. that are normally con-
sidered as coherent noise. As the number of shot profiles used in an inversion is
increased, the signal to noise ratio increases and there are more illumination angles of
the seismic waves on the subsurface. More illumination angles implies a more complete
picture of the subsurface can be obtained. Even using a single shot profile, Mora (1986a)
showed with some synthetic studies that a reasonable resolution can be achieved (both
spatially and between the P- and S-wave velocities). When many shots are used to
invert surface seismic data (reflection data), the result of the inversion is comparable to
the expected result a prestack elastic shot profile depth migration, namely, a high fre-
quency image of P- and S-wave velocities and density. However, compared to migration,
artifacts are smaller, the P and S-wave velocity images are better resolved from one
another, the magnitudes of the velocity and density perturbations have significance in an
absolute sense and there is a slight increase in the lower frequency components of the
image making this result easier to interpret (see also Mora (1986a)). Synthetic studies

show that when signal to noise ratios are high, that an inversion of Just a few shots
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profiles results in a complete image of the subsurface (whereas conventional processing
(stack and migration) would have required at least an order of magnitude more data
(Ronen (1985) comes to the same conclusion)). In comparison to the case of inversion of
reflection data where only the high frequency part of the model can be resolved, inver-
sion of transmission data yields a result containing both high and low frequencies (and
hence blockiness in the model due to layering and other gross features). Transmission
data (such as offset VSP and/or well to well data) contains direct P- and S-waves that
are most affected by the low frequency blocky velocity perturbations which cause
significant delays to these direct waves. If multiple shots are used and hence the direct
waves have illuminated the subsurface at many different angles, then there is enough
redundancy to resolve these gross features (this is comparable to elastic diffraction
tomography, see Devaney (1984) for the case of linearized acoustic diffraction tomogra-
phy). Synthetic studies show that even using offset VSP’s from only two wells located
on either side of a region of interest, it is possible to obtain an inversion result that is

almost 1dentical to the true solution.

INTRODUCTION

In a previous paper (Mora, 1986a) I motivated the use of the elastic wave equation
for the treatment of seismic data and gave arguments for inversion rather than conven-
tional processing. An algorithm was derived (based on the scheme of Tarantola (1984))
which performed inversion of shot profiles for P- and S-wave velocities and density (or
impedances). The inversion attempted to find an earth model that minimized the
difference between the synthetic data computed by performing elastic modeling using
this earth model and the observed wavefield. Therefore, it is a complete wavefield inver-
sion scheme and attempts to take into account all elastic wave events such as reflected
waves, converted waves, shear events, head waves, multiples, rayleigh waves and so on
(note that isotropy will be assumed in this paper so anisotropic effects, if present in field
data, will be treated as coherent noise by this algorithm). The previous paper (Mora
19862a) demonstrated the use of the algorithm for the inversion of a single shot profile of
reflection seismic data. It illustrated the spatial resolution and resolution between the
different model parameters (P- and S-wave velocities and density) and that the low fre-
quency components of the model (the blockiness of layers) only creeps in gradually as the

iterations of the inversion proceed.

This paper concentrates on some synthetic studies using several shots and contrasts
the results of inverting reflection and transmission data. Reflection data resolves mainly

P- and S-wave impedance changes (because that is what causes reflections) while
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transmission data resolves the large scale velocity variations such as blockiness. The rea-
son is that these large scale (or low frequency) velocity variations have the biggest effect
on the direct waves which typically constitute most of the energy in transmitted
wavefields. In particular, the large scale (low frequency) velocity anomalies delay the
direct waves and if the subsurface was illuminated with direct waves at many angles,
these large scale anomalies will be resolved (see also Gauthier et al. (1985) for the acous-
tic case) (c.f. diffraction tomography (see Devaney for a linearized acoustic example)).
Some approaches to obtain the low frequencies in the model when direct waves are not

present in the data set are suggested by Mora (1986a) and Kolb (1986).

INVERSION ALGORITHM

Because of the size of the elastic inverse problem and slowness of doing elastic for-
ward modeling, it is impossible to use the most general methods that avoid local minima
in the objective function such as Monte Carlo methods. Therefore, a compromise is the
use of the iterative least squares optimization methods that assume Gaussian distributed
model and data spaces. In the case of elastic inversion of seismic data the model space is
the P- and S-wave velocities and densities at every location in the zone of interest and
the data space is the recorded seismic data. The Newton algorithm of least squares in
infeasible in two (or three) dimensional elastic inversions using present day computers so
gradient type iterative least squares algorithms must be relied on. The seismic problem
1s nonlinear and so the Polak conjugate gradient algorithm is preferred (see Powell
(1981) or Luenberger (1984)). This reverts to the simple gradient algorithm when the
nonlinearity is too strong and most conjugate gradient algorithms would make poorer
choices of update directions. In the following description I will use d to denote the data
vector (shot profiles, usually multi-component) and m for the model vector (P- and S-
wave velocities and densities). It will be assumed that the joint posteriori probability

function is given by
P(dm) = constant exp — %[Ad* Cilad + Am” Cr;llAm) , (1)

where Ad =d - dy = d(m) — d;, is the data error vector corresponding to the earth
model parameters m and data observations dy, Am = m — mg the model perturbation
vector measured relative to the a priori model my and C4 and C,, are the covariance
matrices for data and model spaces respectively. Note that * indicates conjugate tran-
spose, normally the data consists of real values so © = T unless the inversion is car-
ried out in a complex space (such as the Fourier space). The maximum probability solu-

tion can be obtained by minimizing the square error functional
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S(dm) = [Ad*CglAd+Am*C,;1Am] . (1b)

This may be achieved for nonlinear functions d(m) such as is the case for elastic waves

by using the preconditioned conjugate gradient algorithm (with the Polak choice for the

conjugate direction) as follows

fornzltooo{

d, = d(m,) , data calculation

Ad, =d,-dy , Am, = m,-m, , compute residuals
S(d,m) = Ad" Ci'Ad+Am, C'Am, , square error functional

exit if converged , convergence test

g, =D, Ci!Ad+C;'Am, , gradient
P, = P(g,) = Cpg, , preconditioning
*
Py (gn —En —1] .
c, =P, + - €1 , € =P; ,  comjugate direction
Pn&n
) C g calculate approzimate steplength
M = cn*Dn*Cd—an c, +¢, Cle, '’ by assuming linearity
min S D optimize steplength via linesearch
= d A . .
T Mn (d+71, Dey ,m) "’ using 1], as a starting point

m, . ., =m,-1n,c, , update model

} . (2)

The reason the iteration number n starts at 1 is because I used subscripts O for the a
priori model mj and field data dy. Note that g defines the gradient vector, D = dd/dm
is the Frechet derivative matrix, p is the modified gradient direction (the preconditioned
direction), ¢ is the Polak conjugate direction, # is the linearized steplength and # is the
optimal steplength obtained by a linesearch (necessary because the 7 is calculated assum-
ing linearity but the seismic problem is nonlinear, however, # gives a good value from

which to commence the line search). This algorithm is described in detail in relation to
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the elastic seismic inverse problem by Mora (1986a) (for general background on conju-
gate gradients see Luenberger (1984) and for least squares theory see Menke (1984) or
Tarantola et al. (1982)). The Frechet derivative matrix is never actually required by this
algorithm but only a knowledge of how to compute the operation of it on some model
vector and the operation of its conjugate transpose on some data vector. The operation
of D corresponds to the linearized forward problem and can be computed by any linear

or nonlinear forward modeling scheme d(m) by observing that
dim' ) = d(m)+D(m' -m) = d(m)+ Dém , (3)

for small ém. After some algebra it becomes evident (see Mora (1986a) and Tarantola
(1984)) that the adjoint operation (the operation of D”) required in order to compute
the gradient direction can also be calculated using a forward simulation. From Mora

(1986a) the equation for the gradient in terms of the P- and S-wave velocities and den-

. T
sity, g = [6& , 08, 6?)] is

§& = 2padh + Clla-ag) + - - | (4a)
5B = —4pB5N + 20861 + CFHB-Fo) + - - | (4b)
Sho = (a®28%6N + %64 + 6p + C, N p-po) + - . (4c)

where 86X, §f and 6p are the adjoint operation with respect to the Lamé parameters and

density given by
5y = gs)jdtogl(t)(muj(x,t)][m,bj(x,t)] , (5a)

where v = X\, por p and Q7 is an operator to be defined shortly. The notation used
here is consistent with the previous paper (Mora, 1986a) which gives a derivation of the
gradient. Also, subscript « of §p, in equation (4c) indicates that this term is the gradient
with respect to density when the P- and S-wave velocities are used as the other model
parameters. The -+ - - - at the end of each line in equations (4) is used to allow for the
possibility of covariances between the different model parameters such as Caﬁ(a~a0). In
equation (5a), u; represents the j-th component of displacement of a seismic wavefield,

and 1 is the back propagated residual wavefield given by

Vi(x,t) = %CJI(XR)GU(X;—t Xp,0)* Au; (xp ,t) (5b)

where Au; is error in the displacement wavefield at the current iteration given by

Aui = U; ”'UZ'O
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and u; Is the observed displacement wavefield. Note that Q7 = Q7 is an operator that
depends on the model parameter v and can be considered as a model parameter unravel-
ing operator (y = X, g, or p). Also, note that I use an unusual convention in this
equation to avoid complicated notation with subscripts, namely that the implied summa-

tions within [ ]’s must be carried out first. From Mora (1986a), the unraveling operator

Q7 is given by

0 —id, , O =19, ,Qﬂ:ﬁ[éﬂawéﬁak] : (6)

The inversion formulae, equations (2), (4), (5) and (6), are derived and described by Mora
(1986a) including a comparison with the the process of migration (see also Tarantola

(1984) for the original derivation in terms of the Lamé¢ parameters and density).

The above equations have assumed that the data covariance function can be

represented as
Ci'lxp,t) = OCg'lxg)Cq'(t) . (7a)

In the examples in this paper I specifically used diagonal forms

cilt) = Lo (7b)
0d
and
Ci'lxp) = taper(xp) . (7c)

where taper(xp ) gradually tapers the data at the edges of the receiver array to zero in

order to decrease artifacts caused by edge effects.

EXAMPLES

Introduction

The following are some inversions of synthetic reflection and transmission data sets
to demonstrate what information the algorithm can gain about the deeper geology (non
near surface geology) when applied to reflection and transmission seismic data. There-
fore, considering rayleigh waves would resolve only the near surface they have been
excluded from these calculations (i.e. an absorbing boundary condition was used rather
than a free surface boundary condition at the earth’s surface). Note that together with
refracted waves, rayleigh waves should help resolve the near surface (and hence the solve

statics problem). Therefore, it would be desirable to use a free surface condition when
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an accurate inversion of the near surface is desired. However, because of the large range
of velocity variation in the near surface (and therefore nonlinearity), convergence is
expected to be slow and local minima may pose a problem. Another case when the free
surface boundary condition should not be ignored is when there is a large range of angles
(relative to the earth’s surface) of the source to receiver raypaths at the source or
receiver locations. This would mean that the free surface boundary condition plays an
important role in the source directivity pattern and it is therefore necessary to obtain an
accurate inversion. Often, near surface velocities are low so rays leaving the source are
almost vertical and the effect of the free surface on the source (and receiver) directivity
pattern is unimportant. Inversions of rayleigh and refracted waves will be the topic of a
future paper. One further point is that the size of the velocity and density perturba-
tions in these examples was deliberately chosen to be small (only a few percent) in order
that the inverse problem be more linear and hence the convergence be more rapid. Con-
sidering the large CPU requirements of the algorithm and CPU limitations when carry-
ing out this work, rapid convergence was crucial. Therefore, a demonstration of the algo-
rithm when large velocity and density perturbations (away from the a priori model) are
present will have to await a future paper. Even though velocity perturbations are small,
the following examples illustrate effectively what can be hoped to be gained by using this
inversion procedure. In particular, they show how it is possible to do inversions when the
background velocity model is known accurately (to within a few percent) which would
often be the case in a region where detailed velocity analyses were carried out. The
results also illustrate that S-wave velocity can be obtained as well as P-wave velocity in
inversions of data sets containing S-wave events such as mode conversions, direct S-

waves and S-S reflections as well as the usual P-wave events.

The synthetic data was calculated from the model shown in Figure 1 with elastic
finite differences using a similar (faster) version of the algorithm of Kosloff et al. (1984)
(see also Cerjan et al. (1985)). The algorithm is fully described by Mora (1986b). This
model represents a complex geologic situation consisting of a horst structure and lime-
stone reef complex amidst a multitude of larger layers each with laterally variable ran-
dom fine layer structure within them. It is parametrized by the three isotropic elastic
parameters (P- and S-wave velocity and density) on a square grid with a grid spacing of
20 meters. Nine shot simulations were carried out with shots spaced every .5 km start-
ing at .16 km using a highly band limited source wavelet (a 4-th derivative of a Gaussian
curve with a fundamental frequency of 20 hertz). The surface geophone array was fixed
and covered the 4.34 km region of the model. There were also two wells at .4 km and

3.92 km in which VSP data was recorded for all these shots. Geophone spacing on the
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earths surface and down the wells was the same as the grid spacing. Two component
receivers were used (P-SV type receivers) and a vertical force was applied. A representa-
tive shot profile due to a shot located at 2.16 km is shown in Figure 2 and a typical
offset VSP recorded in the well at .4 km due to the shot at 2.66 km is shown in Figure 3.
The inversion was carried out with the conjugate gradient algorithm (equations (2)) and
using the gradient parametrized in P- and S-wave velocities and density denoted o, 3
and p. The gradient was calculated with equations (4) through (6). To concentrate on
the resolvability of a, @ and p, the source was assumed to be known and so was not
varied but was fixed at its true value throughout the iterations of the inversions. The
same method of elastic finite differences was used to compute both the forward modeled
wavefield u; and the back propagated residual wavefield ¥;. Hence, the results will
illustrate that the algorithm works in ideal circumstances but testing is certainly
required with real seismic data to fully evaluate the method. There may be many factors
in field situations that will effect the results of inversions and must be taken into
account 1f the algorithm is to yield useful results (for instance, geophone couplings).
Equations (7) were used to define the data covariance matrix where the value of p was
.5 (this is equivalent to saying that a time varying gain of ¢ was applied to allow for
wave divergence in 2D and the edges of the data were tapered to reduce finite aperture
artifacts). The data variance o4 was set to a small value so the inversion was not
heavily damped and hence the solution was not required to stay close to the a priori
model mg (ie. little heed was paid in the c.g. algorithm (equations (2)) to
Am,ClAm,, C:'Am or ¢, Cule, ). A preconditioning of C. was applied in algo-

21

rithm (2) where constant diagonal model covariance matrices were used, C,, = a 2.1,

Cps = B2.1 and C,, = pZeI and cross-covariances between different model parameters
were assumed to be zero. This preconditioning has the effect of removing unwanted scale
factors between different model parameters due to their different physical units (and per-
turbation magnitudes). A further preconditioning was applied that spatially equalized
the energy in the gradient g (similarly to the method of AGC but applied over the space
axes (using a long averaging window) rather than the time axis). This corresponds to the
assumption that the standard deviation of the earth parameters from the a priori model
m, does not vary spatially (except rapidly because of geologic/stratigraphic effects) and
so the gradual variations are assumed to be caused by differences in the amount of
seismic energy that can reach different parts of the model. For example, less seismic
energy reaches the edges of the model than the middle. If a preconditioning were not

applied to remove this effect, the convergence would be slower.
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Transmission example

All the data recorded for the nine shots was used simultaneously for an inversion.
This included 9 two-component shot profiles, 9 two-component offset VSP’s from the
well at .4 km and 9 two-component offset VSP’s from the well located at 3.92 km. This
data set contains both reflected and transmitted waves. The reflections are produced by
high frequency perturbations in the P- and S-wave velocities and density and so the
reflections will help resolve the high frequency part of the model. By comparison, the
transmitted waves (direct waves on the VSP’s) are most affected by large scale P- and
S-wave velocity anomalies that cause time delays and so they tend to help resolve these
low frequency velocity anomalies. The true model is compared to the 1 and 10 iteration
inversion result for the P-wave velocity model (Figure 4), S-wave velocity model (Figure
5) and density model (Figare 6). Notice that the 10 iteration results for the P- and S-
wave velocities are close to the true model while the 10 iteration density result is only a
high frequency approximation of the true density model. This is because the low fre-
quency part of the P- and S-wave velocity model could be resolved by the traveltime
delays in the direct waves while low frequency density fluctuations have little effect on
the seismic waves and so cannot be resolved. A major effect of the iterations on the P-
and S-wave velocity models is to make the solution more blocky and similar to the true
model. Also, the S-wave velocity solution is much sharper after the 10 iterations. The
reason is that initially the S-wave velocity is resolved mainly by the strong direct S-
waves on the VSP data causing the solution to have too many low frequencies. After
some lterations when the direct waves begin to be matched by the inversion algorithm,
the reflections begin to have a greater effect and start to boost the high frequencies
thereby sharpening the picture. Notice that just like in the true model, the flat spot at
the top of the horst (gas water contact) can be seen on the P-wave velocity result and
doesn’t exist on the S-wave velocity result. This illustrates that there is a good resolu-
tion between P- and S-wave velocity. Also, observe that the reef can be seen in the
inversion result and has the correct polarity. The magnitudes of the inversion results are
better seen on the well logs shown in Figure 7. Here, the true model is shown at location
1.5 km (i.e. located on the reef) as well as the starting model, first iteration result and
the 10 iteration result. Note that the magnitudes of the velocity perturbations have not
quite built up to their true values after 10 iterations. Considering that the throughout
the iterations, the magnitude of the velocity perturbation gradually increased (as the
velocity perturbations become more blocky like the true model), it is expected that
further iterations would cause the magnitude to build up to almost exactly the true

value. However, considering that this is an inversion of ideal noise free synthetic data, it
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would be unrealistic to expect such perfect results when applying the technique to field
data. Figures 8 and 9 show the data residual (unmatched part of the wavefield) after 10
iterations for the gather and VSP respectively shown in Figures 2 and 3. A graph of the
square error sum as a function of iteration is shown in Figure 10 indicating that the
amount of mismatched energy in the seismic wavefield steadily decreases as the least

squares iterations proceed.

Reflection example

Figures 11 through 13 show the filtered true model and the 1 and 10 iteration
inversion results when reflection data is used but not transmission (VSP) data. The true
model was filtered with the seismic wavelet to make the comparison easier here where
the inversion method could not resolve the low frequency (blocky) velocity variations.
The high frequencies velocity and density models are well resolved by the the inversion
and in particular, the P- and S-wave velocity models are well resolved between one
another (for example, observe that the inversion correctly obtained that there is a gas-
water contact (flat spot) at the top of the horst on the P-wave velocity result but not on
the S-wave velocity result. The main effects of iterations are: (i) to decrease crosstalk
between P- and S-wave velocity (notice that the flat spot is present in the 1 iteration S-
wave velocity result but not in the 10 iteration result). Therefore, the iterations help
improve resolution between the different model parameters, (ii) to decrease the level of
noise on the S-wave velocity result (this is greater than the level of noise on the P-wave
velocity result because the S-wave velocity is mainly resolved using high angle events
such as mode converted waves and S-S reflections, and (iii) to decrease the strength of
elliptical smiles (i.e. finite aperture artifacts similar to migration edge truncation
artifacts). Note that the density is not well resolved from P-wave velocity as seen by fact
that the reef is almost invisible in the density result (i.e. the true P-wave velocity per-
turbation in the reef was positive while the density perturbation was negative and since
these both affected the density result some cancellation occurred). See also Mora (1986a)
for more examples of poor resolution between P-wave velocity and density using the
velocity-density parametrization of the gradient (equations (4) through (6)). cancella-
tion). The inversion results can be seen in more detail on the well logs shown in Figure
14. Here, the true model is shown at location 1.5 km (i.e. located on the reef) as well as
the starting model, first iteration result and the 10 iteration result. Note that the mag-
nitudes of the velocity perturbations after 10 iterations are much smaller than the true
velocity perturbations. Also, compared to the inversion results when VSP data was used

shown in Figure 7, the magnitudes are smaller. This is because the reflection data alone
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FIG. 9. Unmatched part of the VSP of Figure 3 (i.e. the residual) after 10 iterations of the
inversion algorithm when using both reflection and transmission data in the inversion (i.e. shot
profiles and VSP’s). It is plotted at the same scale as Figure 3. (a) Vertical component, and (b)
horizontal component.
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FIG. 10. The sum of square error as a function of iteration when both reflection and transmission
data are used in the inversion (i.e. shot gathers and VSP’s).
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FIG. 11. Comparison of the true P-wave velocity model and inversion results at various iterations
when using only reflection data (i.e. shot profiles only). Note that the plots are not at the same
scale. (a) True P-wave velocity model, (b) P-wave velocity inversion result after 1 iteration, and

(c) P-wave velocity inversion result after 10 iterations.
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did not well resolve the low frequency P- and S-wave velocity models and hence
kinematical errors exist even after 10 iterations. Therefore, it is impossible to perfectly
match the data by simply increasing the magnitude high frequency model perturbations
so the algorithm makes a compromise in order to decrease the sum of square error and
finds smaller magnitude high frequency perturbations. Figure 15 shows the data residual
(unmatched part of the wavefield) after 10 iterations for the gather shown in Figure 2.
The residual is slightly larger than for the case where VSP data was also used in the
inversion (see Figure 7). A graph of the square error sum as a function of iteration is
shown in Figure 16 indicating that the amount of mismatched energy in the seismic
wavefield steadily decreases as the least squares iterations proceed. However, it does not
decrease by as much as the case when VSP data was also used in the inversion. This is
because the VSP data helped resolve the blocky part of the model and hence obtained a
more accurate kinematical model (than the starting guess) thereby allowing the error to
be reduced by a greater degree. Note that as shown by Mora (1986a), the low frequen-
cies slowly build up as iterations proceed even when only reflection data is used. This is
llustrated in Figure 17 which shows the true amplitude spectrum of a P-wave velocity
well log and the 1 and 10 iteration spectra. However, considering that there is only a
minimal increase in the low frequency content of the spectra even after 10 iterations, it
would be inefficient to try to obtain all the low frequencies by iterating further. Also,
considering that the residuals shown in Figure 15 are small, it is expected that when
noise is present not all the low frequencies would be well resolved no matter how many
iterations were carried out. The problem is that the choice of the objective function
leads to a particular way that the model solution is built up with iteration (i.e. the gra-
dient direction depends on the objective function). When only reflection data is used in
the inversion, the high frequency parts of the model are much better resolved than the
low frequency parts and so appear rapidly in the early iterations. A way to solve this
problem is by introducing the correct a priori information on the model parameters
(namely that the velocity model is blocky) thereby leading to different objective func-
tions and hence procedures that converge equally rapidly on all frequencies components
of the model (see Mora (1986a) and Kolb et al. (1986)).

SEP-50
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FIG. 15. Unmatched part of the shot profile of Figure 2 (i.e. the residual) after 10 iterations of
the inversion algorithm when using only reflection data in the inversion (i.e. shot profiles only).
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FIG. 16. The sum of square error as a function of iteration when only reflection data is used in
the inversion (i.e. shot gathers only).
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FIG. 17. Vertical wavenumber spectra of the P-wave velocity model located at 1.5 km (i-e. the
spectrum of the P-wave velocity log at 1.5 km). (a) The spectrum of the true P-wave velocity
log, (b) spectra of inversion results when both transmission and reflection data are used after 1
iteration (broken lineg and 10 iterations (solid line), and (c) spectra of inversion results when only

reflection data is used after 1 iteration (broken line) and 10 iterations (solid line).
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CONCLUSIONS

Two-dimensional elastic inversion of reflection and transmission seismic data has
been described and with some speedups it should be feasible though costly on todays
super computers. It is based on matching the observed wavefield to a wavefield com-
puted with an elastic modeling scheme. The advantage of this method over the conven-
tional processing approach is that it treats all elastic wave events as signal and uses
them in the inversion to obtain three elastic parameters, P- and S-wave velocity and
density. This is especially important for wide-offset seismic experiments and multi-
component surveys where both P and S waves are present. Synthetic data tests show
that the elastic inversion works on realistic sized problems with excellent resolution
between the P and S-wave velocities. For the inversion of reflection data alone (shot
profiles), only the high frequency components of the elastic parameters were resolved. In
the case where transmission seismic data (i.e. data containing direct waves such as VSP
data) is used in the inversion in addition to reflection seismic data, the low frequency
components are well resolved and the inversion result looks almost exactly like the true
model in synthetic tests. Future work is required to test the algorithm more thoroughly
under different circumstances such as when significant multiples (and hence nonlineari-
ties) are present, for the case of inversions of rayleigh waves and refractions for the near

surface and most importantly, for the case of field seismic data.
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