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Accurate finite-difference derivative operators by inversion

Joe Dellinger and Peter Mora

INTRODUCTION

The wave equation solved by the method of finite differences has numerical dispersion
due to inaccuracies in the discrete derivative operator. Typically, derivative operators
are obtained by Taylor’s expansions which lead to schemes that are very accurate near
zero frequency but decrease in accuracy for higher frequencies. One alternative method to
obtain a derivative operator (proposed by Jon) is by solving for an operator of a specified
length that minimizes the numerical grid dispersion. This can in principle be done using the
conjugate gradient algorithm provided the adjoint operation can be calculated. The adjoint
operator depends on the two spaces involved. In the case of normal seismic inversion, the
spaces are the seismic data space and the space of physical parameters. Here the spaces
are the seismic data space and the derivative operator space. The inversion will minimize
the square error between the desired solution (without grid dispersion) and the solution
obtained by using the finite difference scheme. Once a finite-difference representation of
the derivative operator that minimizes grid dispersion for some range of velocity models
has been found, it can be used again and again with different distributions of physical
parameters. Possible problems with this scheme are nonlinearities leading to local minima

and constraining the inversion to be stable.
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THEORY

Introduction to adjoint operators

Consider a linearized forward problem
6d = Dém. (1)

From the definition of the adjoint operator < y, Az > = < z,A*y > it is clear that the
adjoint operation is

ém = D*éd. (2)
The “*” signifies that this is the dual space and does not have the same units as the original

model space. It has instead the inverse units and can be made to have the same units by
applying the inverse Hessian or an approximate inverse Hessian to scale the parameters
appropriately.

In order to obtain the adjoint of the wave equation with respect to the derivative
operator we must have a linearized wave equation of form (1). Then, the Frechet kernel
(the elements of D) can be identified and the adjoint expression can be easily written (as
was equation (2)).

The linearized forward problem

Consider the acoustic wave equation

P—0zzp=f. (3)

The velocity is assumed to be unity here to avoid cluttering the equation with unnecessary

terms.

Writing the second derivative operator as a convolutional operator ¢ we obtain
p—cxp=f. (4)
Perturbing the pressure and convolutional operator yields
(5+ 65) — (c+6) * (p+ &p) = 1. (50)

Expanding, ignoring second order terms and reordering yields

(p—cxp—f)+6p—c*bp=6bcxp. (5b)
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The parenthesized term is identically zero (see (4)) and so we have
6p—cxbép=26f, where &f=6cxp. (6)
Using Green’s functions to solve this wave equation we have
op(z,,t) = /d:c G(z,,t;2,0) *; 6 f(z, ), (7a)

where #; is used to denote convolution over time. The Green’s function G (zy,t;z,0) is the
impulse response of the wave equation (4) when a shot is fired at location z at time ¢ = 0.
The wavefield is observed as a function of receiver location z, and time ¢.

Substituting the definition of 6f into (7a) yields

ép(z,,t) = /dm G(zy,t;z,0) *; [5c(:1:) *zp(x,t)]

- /dz G (22,8 7,0) *t/dX 5e(X)p(z — X, 1)
- /dX[/ dr G(z,,t;z,0) %, p(z — X,t)]&(X)

_ / X K(z,,t, X)5e(X). (7b)

This has the form of the linearized forward problem (1) and defines the Frechet kernel
K(z,t,X).

The adjoint expression

The adjoint expression is clearly (see (7b), (1) and (2))

6¢(X) = /dm,/dt K(z,,t, X)6p(z,,t)

= /dz,/dt[/ dz G(z,,1;,0) *; p(x—X,t)]5p(xr,t)-

Applying the identity [ dtf(¢) « g(t)h(t) = [dtf(—t)g(t) * h(—t), we continue with
= / dz, / dt [/ dr p(z — X, —t)G(z,,t; z,0) *; 5p(:c,,—t)]

= /dt/d:z: p(z— X, —t) [/ dz, G(z,t; z,,0) *: 6p(z., —t)] , (7¢)
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FIG. 1. Right: The “ideal solution”, which our inversion scheme will attempt to converge
on. Left: The standard three-point second derivative operator solution.

using the spatial reciprocity of G at this last step. Making the definition

() = / d2,G (2, ~t; T1,0) %1 6p(z2,1), (8)

we finally obtain for the adjoint expression

53(X) = / at / dz p(z — X, 8)0(z, 1). (85)

The wavefield p is simply the wavefield that is calculated by finite differences when the
forcing function f is applied. The wavefield ¢ is the wavefield produced by doing finite
differences applying the residual wavefield 6p as a forcing term where the propagation is

now carried out in negative time (i.e. ép is back propagated from time t = tmax to t = 0).

A SIMPLE EXAMPLE

We will now illustrate the preceding theory with a very simple example. Our forcing
function will consist of a positive unit spike centered on the z axis at time ¢ = 0, followed
by a negative spike at the same position 2 time units later. Such a source is rich in the high
frequencies that display the worst numerical dispersion. The time and spatial sampling
rates will both be set to 1 everywhere, and the velocity to .4. For simplicity, we will restrict

our convolutional representation of the spatial second derivative to a length of three points.
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The “ideal solution” which our inversion will attempt to converge on was generated
by oversampling the forcing function by a factor of 5, doing the finite differences with the
usual 3-point second derivative operator (1, —2, 1), and subsampling the resulting wavefield
back onto the original grid. This wavefield is shown on the right-hand side of Figure 1.

Note that on such a coarse grid it is impossible to perfectly represent a spike moving with

a non-integral velocity.

The “standard” finite-difference three-point second derivative operator is the series
(1,—2,1). If this operator is used, the left side of Figure 1 results. Note the severe
numerical dispersion. Our inversion will attempt to find the 3-point convolutional operator
that results in a wavefield as close to the “ideal solution” as possible when used on this

coarse grid.

Various ways to descend

For this simple problem, we have only to search a three-dimensional space (the three
coefficients of the second derivative operator). By starting with a symmetric operator
which then stays symmetric during the descent, we reduce this further to a two-dimensional
space (the two outer coefficients and the single center coefficient). A contour plot of this
space is shown in Figure 2, along with steepest descent paths starting from various initial
points. Out of the 10 different initial points, half of the runs do not find the global
minimum at (1.6, —3.1,1.6), and instead settle in one of many of the small local minima

which are present.

The nonlinear conjugate-gradient algorithm (see Figure 3) has even worse troubles.
Linear conjugate gradients determines a direction and a magnitude to move for the next
iteration. In a nonlinear problem, this calculated magnitude is likely to have the wrong
scale, and so three different magnitudes are tried, a parabola is fitted through these points,
and the distance to the minimum of the calculated parabola is used. This method reduces
to ordinary conjugate gradients for a linear problem. If at any point conjugate gradients
picks a poor direction due to some local nonlinearity, then the parabola fitting step will
pick a zero (or nearly zero) magnitude in that direction as being best, and the descent
will stop. This problem can be corrected by checking for this condition, and temporarily

reverting back to steepest descents to get the direction to proceed in.

Linear conjugate gradients (see Figure 4) by consistently choosing too large a distance
to move at each iteration avoids the smaller local minima by “bouncing out” of them. Since
it is expected that the desired minima will always be much larger in size than the others,

some such method may also prove useful for higher dimensional cases as well.
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FIG. 2. Contour plot of the mean square error between the computed and desired wavefield
as a function of the 3 coefficients of the second derivative operator used to do the finite-
differencing, with superimposed steepest descent paths starting from various initial points.
The end of each descent path is marked by a square. The contours are not at regular
intervals. The contours were chosen so as to show the direction of slope of the surface
everywhere.

Results

Figure 5 shows the calculated wavefields at various steps of the inversion for two
different runs, the ones marked by a script “L” and “R” in Figure 4. The left half of the
figure shows an unsuccessful run which gets stuck in a local minimum. The right half of
the figure shows a successful run which finds the global minimum. Comparing the lower-
rightmost plot in Figure 5 with the left plot in Figure 1, one can see that the inversion has

determined a better operator than the standard (1,—2,1).
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FIG. 3. As Figure 2, but the nonlinear conjugate gradient algorithm was used to do the
descent.

Future directions

The global minimum in Figure 4 shows a pronounced elongation from the lower left
to the upper right. This “groove” in fact lies exactly on the line given by Y ¢; = 0. It
makes sense include constraints such as this one in the inversion from the very beginning.
The theory of incorporating constraints has been worked out but no tests have yet been

made. This will be the subject of a future paper.

CONCLUSIONS

In a regular mesh such as an evenly spaced one dimensional mesh, the convolutional
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FIG. 4. As Figure 2, but the linear conjugate gradient algorithm was used to do the
descent. The script “R” and “L” refer to the right and left hand sides of Figure 5, respec-
tively.

operator ¢ & J;, can be obtained by applying the conjugate gradient algorithm using the
adjoint expression (8). The adjoint requires only two finite difference calculations, one to
obtain p and the other to obtain 1.

Chuck’s problem of finding operators for an icosahedral grid (Sword, 1986) may in-
volve more finite difference calculations because the mesh is irregular and many different
differencing stars are required. Just as Chuck does not need to recalculate the shape of
his grid anew each time he puts in a different source, an appropriate operator need only

be calculated once for each mesh point in an irregular grid, and after that it can be used

unchanged.
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FIG.5. Wavefields produced at the beginnings, middles, and ends of two different inversion
runs.
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APPENDIX
Proof of relationship [ dt f(t) x g(t)h(t) = [ dt f(—t)g(t) * h(—t)

[ e 1+ a0

= [ [ ar (e =m0

= [ar 1) [ ot =n00)

= [ar 1-1) [ @ oz —0)R(-1)
= [ a5 [t oo~ on-)

= [ at r=0a(e) « m(-1)
Q.E.D.
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