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Conjugate Gradient Tutorial
Jon F. Claerbout

ABSTRACT

The conjugate-gradient method is a general purpose simultaneous equation solving
method ideal for geophysical inversion and imaging. A simple form of the algorithm

iteratively searches the plane of the gradient and the previous step.

INTRODUCTION

The solution time for simultaneous linear equations grows cubically with the
number of unknowns. For equations with hundreds of unknowns the solutions require
minutes to hours. What can we do about geophysical problems with unknowns number-
ing in the millions? The number of unknowns somehow must be reduced by theoretical
means, or else we must turn to numerical approximation methods. A numerical tech-

nique known as the conjugate-gradient method provides good approximations.

The conjugate-gradient method is an all-purpose optimizer and simultaneous equa-
tion solver. It is useful for systems of arbitrarily high order because its iterations can be
interrupted at any stage and the partial result is an approximation that is often useful.
Like most simultaneous equation solvers, the exact answer (assuming exact arithmetic) is

attained in a finite number of steps.

The conjugate-gradient method is really a family of methods. There are perhaps a
dozen or more forms of the conjugate-gradient algorithm. The various methods differ in
treatment of underdetermined systems, accuracy in treating ill-conditioned systems,
space requirements, and numbers of dot products. Conjugate-gradient methods are an
active area of computer science research. A popular program by Michael Saunders has
625 lines. My plan here is to present the geometrical concepts and a one-page program.

The program should handle most practical cases. Since you will understand the one-
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page program, it will be convenient for alterations such as making snapshots of the resi-
dual during the descent, or adapting to nonlinear optimization. The principal disadvan-

tage of the program presented here is that it uses more auxiliary memory vectors than

most other versions.

CHOICE OF DIRECTION

Any collection of search lines can be used for function minimization. Even if the
lines are random, the descent can reach the desired extremum because if the value does
not decrease when moving one way along the line, it almost certainly decreases when

moving the other way.

Why steepest descent is a slow way to go

Before we can understand why the conjugate-gradient method is so fast, we need to
see why the steepest descent method is so slow. Visualize a contour map of a moun-
tainous terrane. The gradient is perpendicular to the contours. Contours and gradients
are curved lines. In the steepest descent method you start at a point where you com-
pute the gradient direction at that point. Then you begin a straight line descent in that
direction. The gradient direction curves away from your direction of travel, but you
continue on your straight line until you have stopped descending and are about to
ascend. There you stop, compute another gradient vector, turn in that direction, and
descend along a new straight line. The process repeats until you get to the bottom, or

until you get tired.

What could be wrong with such a direct strategy? The difficulty is at the stopping
locations. The stops occur where the descent direction becomes parallel to the contour
lines. (That is where the path becomes horizontal). So after each stop, you turn 90°
from parallel to perpendicular to the local contour line for the next descent. What if the
ultimate goal is at a 45° angle to your path? A 45° angle turn can not be made.
Instead of moving like a rain drop down the centerline of a rain gutter, you move a fine-
toothed zigzag path crossing and recrossing the centerline. The gentler the slope of the

rain gutter, the finer the teeth on the zigzag path.

From the rain gutter example you see the problem of steepest descent is that you
overshoot the centerline before stopping. If you must use the steepest decent method, it
seems you should make one steepest descent step. After that you should undershoot the
local minimum, say by 2/3 of the distance. Conventional wisdom is to overshoot all

steps by about 3/2.
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CONTOURS AND LINE SEARCHES

Let us minimize the sum of the squares of the components of the residual vector

given by

residual = data space — transform model space (1a)

R = Y[A]x (1b)

How is equation (1) related to a contour plot? A contour plot is based on an alti-

tude function of space. The altitude is the dot product R -R. By finding the lowest
altitude we are driving the residual vector R as close as we can to zero. If the residual
vector R reaches zero, then we have solved the simultaneous equations Y=Az. In a
two-dimensional world the vector 2 has two components, (24, z5). A contour is a
curve of constant R -R in (z,, z,)-space. These contours have a statistical interpreta-

tion as contours of uncertainty in (z, z,) given measurement errors in Y.

How is equation (1) related to a line search? Let R be the residual at any random
value of z. Suppose a random perturbation dz is proposed. If we add dz to =z
then the residual R gets augmented by —A dx. Since we have no idea whether this
perturbation is a good one or not, we multiply it by a scaling factor « which could be
positive, negative, or zero. Let us find «. Let G == A dzr. We seek to minimize the
dot product (R -aG):(R-aG). Set to zero the derivative of the dot product with
respect to a. This gives o = (R -G )/(G -G ). Geometrically and algebraically the new
residual R’ = R -aG is perpendicular to the “fitting function” G .

CONJUGATE GRADIENT

In the conjugate-gradient method a line is not searched. Instead a plane is
searched. A plane is made from an arbitrary linear combination of two vectors. One
vector will be chosen to be the gradient vector, say ¢g. The other vector will be chosen
to be the previous descent step vector, say s=z;-z; ;. Instead of o g we nced a
linear combination, say a g + 8s. For minimizing quadratic functions the plane
search requires only the solution of a two-by-two set of linear equations for a and §S.
The equations will be specified along with the program. (For nonquadratic functions a

plane search is considered intractable, whereas a line search proceeds by bisection).

SEP-48



Claerbout 354 Conjugate gradients

Magic

There are a number of properties of the conjugate-gradient approach that are well
known, but harder to explain. Luenberger’s book is a good place to look for formal
explanations of this magic. (His book also provides other forms of the conjugate-

gradient algorithm). Another helpful book is that of Strang [1986]. Known properties

are:

1. The conjugate-gradient descent method gets the exact answer (assuming exact

arithmetic) in n descent steps, where n is the number of unknowns.

2. Since it is helpful to use the previous step, you might wonder why not use the pre-
vious two steps, since it is not hard to solve a three-by-three set of simultaneous
linear equations. It turns out that the third direction would not help. The dis-

tance moved on the extra direction would be zero.

Conjugate-gradient theory for programmers

Fourier transformed variables are often capitalized. Here we will let vectors

transformed by the A matrix be capitalized. A matriz such as A is denoted by bold-

face print. For example:

X = Az (2a)
Gi = Ay; (2c)

Obviously a linear combination in solution space, say s-+g, corresponds to S+G in

the conjugate space. The residual is

R = Y-Az = Y -X (3)
The solution z is obtained in steps 8j.
r = sy +sgtszgt - (4)

The last stage of each iteration is to update the solution and the residual.

solution update: 2 —2 +s

residual update: R —R -5
The gradient ¢ 1is a vector of length of z. One such vector is
= ATR = gradient (5a)

g
G = Ag = conjugate gradient (5hb)
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You don’t need to know what ¢ is the gradient of, but if you would like to learn, note
that

~ 9 (Y -"AY(Y —Az) — A'R (6)

Oz

In dot product notation, the plane spanned by the gradient and the previous step

vector is searched when we minimize with respect to o and A the quadratic:

Qe ) = (R-aG-fS) (R-aG-BS) (7)

The minimum is found at 8Q /da = 0 and 9Q /8 — 0, namely
0 = G (R-aG-BS) (8a)
0 = S -(R-aG-BS) (8b)

You are ready to tackle the program.

PROGRAM
# minimize res(m) = y(m) - aaa(m,n) * x(n) by conjugate gradients.
subroutine cg( n, x, g, s, m, y, res, gg, ss, aaa, niter)

integer i, j, n, m, iter, niter
real x(n), y(m), res(m), aaa(m,n)

real g(n), s(n), gg(m), ss(m) # space vectors
real dot, sds, gdg, gds, determ, gdr, sdr, alfa, beta
doi=1,n
x(i) = 0. # clear solution
doi=1,m
res(i) = y(i) # load the residual vector
do iter = 0, niter { # niter is the specified number of iterations
doj=1,n{
g(j) = 0. #g—= AT * res = grad

doi=1m
g(i) = g(j) + aaa(i,j) * res(i)

doi==1m {
gg(i) = 0. # gg = A * g = conjugate gradient
doj=1,n

gg(i) = gg(i) + aaa(i,j) * g(j)
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if(iter == 0) { # one step of steepest descent
alfa = dot(m,gg,res) / dot(m,gg,88)
beta = 0.
else { # search plane by solving 2-by-2
gdg = dot(m,gg,gg) # G- (R-Ga-SpP) =0
sds = dot(m,ss,ss) # S - (R-Ga-Sp)=0
gds = dot(m,gg,ss)
determ = gdg * sds - gds * gds + 1.e-30
gdr = dot(m,gg,res)
sdr = dot(m,ss,res)
alfa = ( sds * gdr - gds * sdr ) / determ
beta = (-gds * gdr + gdg * sdr ) / determ
doi=1,n # s = model step
s(i) = alfa * g(i) + beta * s(i)
doi=1m # ss = conjugate
ss(i) = alfa * gg(i) + beta * ss(1)
doi=1,n # update solution
x(1) = x(1) + s(i)
doi=1m # update residual

res(i) = res(i) - ss(i)
return; end

real function dot( n, x, y )
integer i, n
real val, x(n), y(n)
val = 0.
doi=1,n
val = val + x(i) * y(i)
dot = val
return; end

EXAMPLE

y transpose
3.00 3.00 5.00 7.00 9.00

A transpose
1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00
1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00
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for iter = 0, 4

X
res
X
res
X
res
X

0.43457383 1.56124675 0.27362058
0.73055887 -0.55706739 -0.39193439
0.51313990 1.38677311 0.87905097
0.22103608 -0.28668615 -0.55250990
0.39144850 1.24044561 1.08974123
0.27836478 0.12766024 -0.20252618
1.00001717 1.00006616 1.00001156

357

0.25752524
0.06291389 0.22804642
0.56870568
0.37106201 0.10523783
1.46199620
0.18477297 -0.14541389
2.00000978

res -0.00009474 -0.00014952 -0.00022683 -0.00029133 -0.00036907

X

0.99999994 1.00000000 1.00000036

2.00000000

res -0.00000013 -0.00000003 0.00000007 0.00000018 -0.00000015
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