345

Tutorials

Jon F. Claerbout

INTRODUCTION

The tutorial articles included here are derived from material that appeared in ear-
lier SEP reports. The NMO paper is a complete rewrite, for reference more than for
tutorial purposes. The conjugate gradient paper is a revision of an earlier tutorial. The
revision is only about 25%, but I deem it worth reprinting because of my belief that we

should see increased use of this method.

346

Load Average

Do

Gam

Load average on Hanauma, sampled every 10 minutes and averaged over the last 2 months

rrirprrrrrrrp bt

[N I N Y O O A v O |

Noon Mid 6am

Mid bam

Noon bpm

Weekend

bpm
Weekday

System accounting is done at 4AM. People often wander over to the student union for dinner

at around 5PM, or go home for a few hours and come back late in the evening. It is common
practice to start something running before going off to lunch. Things pick up slowly after lunch.
Quite a few people work on weekends, but not in the morning. Last chance to get a snack at

the student union is around 11:30PM.

347

Pseudounitary NMO Tutorial

Jon F. Claerbout

It is often desirable to work with transformations that are as near as possible to
being unitary, i.e. their transpose is their pseudoinverse. Such transformations will be
called pseudounitary. The practical value is that iterative transformation, as may be a
part of some estimation procedure (such as missing data or deconvolution), does not lead

to continued degradation.

Let us make NMO into a pseudounitary transformation. With linear interpolation,
the matrix operator defining NMO has two bands. The matrix T = NMOT NMO is
tridiagonal, and we need to factor it into bidiagonal parts, say T = BT B. Such fac-
torization is called Cholesky decomposition. It is remniscent of spectral factorization.
Then we’ll define pseudounitary NMO = UNMO = NMO B! To confirm the uni-
tary property, examine UNMOT UNMO = B-TNMOT NMO B! — B-TBT Bp-!
=1.

(Consider UNMO = NMO B~!. Time series experts will recall that an all-pass
filter is a ratio of two terms, both with the same color, the denominator minimum phase
and the numerator not. So Cholesky factorization gives the “minimum-phase” denomi-

nator.)

First notice that:

by ay dq dy e
ay by ay ey dy dy € T
= az b3 aj - ey dj d3 e3 =55
az by €3 dy dy

Writing out the terms of the above product suggests a direct recurrence for the

components of the bidiagonal matrix.

SEP-48

Claerbout

348

d(1) = sqrt(b(1))
do i==1, n-1 {

e(i) = a(i) / d(i)
d(i-+1) = sqrt(b(i+1) - e(i)*e(i))

Pseudounitary NMO

To apply B! to data use backsubstitution. The reason it is pseudounitary is that

a number of the matrix elements vanish. (These cluster at the upper left corner of the

matrix). It can be confirmed that the components that cannot be computed because of

an implied zero divide may simply be set to zero. For reference, a program is included

below. To within machine accuracy, it passes the (A'y)z—y'(Az) test for random
p

valuesof z and y.

trainv=0: zz(iz) = [pseudounitary NMO} tt(it)
trainv=1: tt(it) = [pseudoinverse NMO| zz(iz)

subroutine unmoix(trainv, mktab, slow, x, t0, dt, nt, tt, zz,

itab, dd, ee, w0, wl)

integer trainv, it, nt, iz, mktab, itab(nt)

real slow(nt), t0, dt, tt(nt), zz(nt), t, %, 2, tm, tpart, xs, arg,
w0(nt), wi(nt), dd(nt), ee ntP, bb(4000}, cc{4000), zt(4000)
if(mktab ==1) {

tabulate pointers and weights.
doit =1, nt {
ce(it) = 0.
bb(it) = 0.

z=1t0 + nt * dt
t=12

doiz=nmt, 1,-1 {

xs = x * slow(iz)

arg =z * z + Xs * xs

next line replaceable by: t = sqrt (arg)

t=(arg +t *t) /(t +t)

it = (t - t0) / df + 00001

tm = t0 + it * dt

tpart =t - tm

w0(iz) == (dt - tpart) / dt

wl(iz) = 1. - w0(iz)

itab(iz) = 0

if (it+1 <=nt){ # interior
itab(iz) =1t
bb(it) = = bb(it) + wo(iz) * wo(iz)
cc(it) = ce(it) + wifiz) * wo(iz)
bb(it+1) = bb(it+1) -+ wi(iz) * wi(iz)

else if (it <==nt) { # at edge
b el 4 wo(iz) * wo(iz)
cc(it) = ccfit) + wil(iz) * wo(iz)

else # off end

itab(iz) = 0
==z - dt

SEP-48

Claerbout 349 Pseudounitary NMO

dd(1) = sqrt(bb(1)) # Cholesky factorization.
doit = 1, nt-1 {
if(dd(it) 1= 0.)
ee(it) = cc(it) / dd(it)
else
ee(it) = 0.
dd(it+1) = sqrt(bb(it+1) - ee(it)*ee(it))

}

if(trainv == 0){ # Operator itself
if(dd(nt) I=10.) # Divide bidiagonal
zt(nt) = tt(nt) / dd(nt)
else
zt(nt) = 0.
doit = nt-1, 1, -1
if(dd(itg I=0.)

zt{it) = (tt(it) - ee(it) * zt(it+1)) / dd(it)
else
zt(it) = 0.
doiz = 1, nt # Linear interpolate
zz(iz) = 0.
doiz = 1, nt {
it = itab(iz)
if(it > 0){
zz(iz) = zz(iz) + wO(iz) * zt(it)
zz{iz) = zz(iz) + wi(iz) * zt(it+1)
else ifgit <0){
1t = -it
iz(iz) = zz(iz) + wo(iz) * zt(it)
}
}
else { # pseudoinverse
doit= 1, nt
zt(it) = 0.
doiz =1, nt { # Linear interpolate
it = itab(iz)
if(it > 0
zt(it) = zt(it) + wo(iz) * zz(iz)
zt(it+1) = zt(it+1) + wi(iz) * zz(iz)
else if(it < 0){
it = -it
it(it) = zt(it) + wo(iz) * zz(iz)
}
if(dd(1) I=0.) # Divide bidiagonal
tt(1) = zt(1) / dd(1)
else
t(1) = 0
doit =2, nt
if(dd(it) 1= 0.
tt(it) = (zt(it) - ee(it-1) * tt(it-1)) / dd(it)
else
t(it) = 0.
return; end

SEP-48

350

Halley's comet, 2061:

Another too-symmetric visit, but the exact opposite of this year's. We won't come very close,
but we get a good look at the comet when it is intrinsically at its brightest. If you have great
faith in the progress of medical technology, you may be interested to know that in the NEXT
apparition after this one, Halley's will come VERY close to Earth, halting our attempts to peer
further into the future due to the large errors tiny uncertainties at that distant point in time
create. In the other direction, we can extrapolate backwards in time all the way to 1404BC.

Reprinted with permission from Mankind's Comet, by Guy Ottewell and Fred Schaaf

