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Deconvolution in Velocity Space

Jon F. Claerbout

ABSTRACT

The deconvolution process is motivated by two phenomena, source signature and
near-surface reverberation. Here the process is formulated to include uncertainty in the
velocity of near-surface weathered layers. Tests on previously studied data confirm that
wave-equation deconvolution removes wide-angle multiples more effectively than does
simultaneous pre- and post-NMO deconvolution. No obvious multiple reflections remain.
As before, a bubble signature cannot be confirmed as being an essential feature of this

data.

Regression coefficients are determined in both offset space and in a velocity space.
Regression coefficients determined in the velocity space give better results in offset space

than do regressions done entirely in offset space.

INTRODUCTION

An earlier paper, Simultaneous Pre- and Post-NMO Deconvolution, in SEP-42 and
also submitted to Geophysics (alleged to appear in July 1986) asserted that wave
theory justifies both pre- and post-NMO deconvolution, but the filters should be
estimated stmultaneously, not sequentially. A linearized theory enabled simultaneous
estimation of the two filters. Field data test cases showed the expected interaction
between NMO and deconvolution. But it was clear that multiple reflection energy
remained after the deconvolution. Perhaps that is why the tests were not able to
confirm the theoretical concept that simultaneous estimation is superior to sequential

estimation. Nor were the tests able to establish any utility of pre-NMO decon when
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decon was done after NMO. The difficulties were all ascribed to the inadequacy of NMO

as a downward continuation process.

In this paper downward continuation is done with the wave equation instead of
NMO. As before, linearized regression still enables handling both designature and
dereverberation. Downward continuation is done with a 15° finite-difference program
because it offers low noise, dip filtering, and adequate angle bandwidth in near-surface,

low-velocity media.

PRE- AND POST-NMO DECON REVIEW

Simultaneous estimation of pre- and post-NMO decon filters (¢ -decon) is embed-

ded in the following model:

1 1 NMO -1 random (1a)

—sig 1 — reverb

data ==

First, random white noise is divided by a reverberation filter. (An example of reverb
expressed in Z-transform notation is ¢ Z" where ¢ is the sea-floor reflection
coefficient, and Z" is the delay operator for vertical travel time). The result is con-
verted into hyperbolas by inverse NMO; a spherical divergence multiplier 1/t is
applied; and the result is convolved with a source signature wavelet to give the synthetic
data. In this model the signature is signature = 1/(1-sig ). In this model the same

signature wavelet is applied to all offsets, i.e. the source is presumed to be an isotropic

radiator.

As an equation for modeling seismograms, (1a) is rather simple. But inversion is
more difficult than modeling and (1a) provides a more detailed physical model than
underlies conventional deconvolution. My earlier study that used (1a) suggested the
most significant factor not incorporated in (1a) is the different moveout velocities of pri-
maries, multiples, and peglegs. The present study generalizes (1a) so that Z is a down-

ward continuation operator. This correctly compensates for the velocity differences.

A MODEL FOR WAVE-EQUATION DECONVOLUTION

A theoretical development has not been prepared. But I imagine it could proceed

along the following lines. Modify (1a) to read

1 1 random

1-sig VvVt 1-rev * Diff

The NMO operator has been omitted because the rev * Diff operator will now be

data =~ (1b)

interpreted as a combination of some regression coefficients and a two-dimensional
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diffraction and delay operator. Because the operator is two dimensional, and the real

world 1s three dimensional, there is a remaining vt divergence correction.

Next there should be a linearization step to get a multivariate expression in the un-
known regression coefficients of sig and rev. Then I would make various assertions
based on my experience that strict treatment of gain functions is not important. Thus I
would conclude that the following regression, which is the one examined by the experi-
mental work in this paper, has a theoretical basis.

t? data(t,z) =~ Y o Diff(z;, v;) t* data (¢, z) (2)

i
In this expression, data (¢, z) is a field profile, Diff is a nonretarded diffraction operator,
and o; is the family of regression coefficients. For each coefficient a; there is a depth z;
and a velocity v;. The depth and the velocity will be expressed in a (¢, €)-plane, where
t=z/v is the travel time depth, and é=zv =tv? is the diffraction distance (like the

“optical path length”), more generally

£ = [u(z)dz (3)
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THE REGRESSORS (figure 1)

Figure 1a shows the marine profile studied. It is profile number 27 from Yilmaz
and Cumro [1983] or Yilmaz [in press|. The water bottom depth is about 100ms as is
evident by the pegleg interval emphasized by a blank rectangle at 2.5s and 1km offset.

The data is displayed (and processed) with a ¢2 divergence correction.

Figure 1b shows a typical regressor obtained by delaying the data of figure la by
the water-bottom vertical two-way time. This panel is used as a regressor onto panel 1a.
The coefficient of regression can be placed on a filter at a delay time equal to the travel-
time depth. Other panels will also be used in the regression corresponding to other filter
lags. Here the filter will be more general, the points being located on a plane, not simply

a line (function of lag). The plane is the time-diffraction (¢, £)-plane.

Figure 1c shows another regressor. This plane was derived from figure 1a by delay
and diffraction to the sea floor. The coefficient for this regressor will be located in the

time-diffraction (¢, &)-plane at (f55110m . thottom XUH220 ).

The entire time-diffraction plane of regressors was not computed. That would be
too many regressors. Remember that each point in the time-diffraction plane of regres-
sion coefficients corresponds to a plane like figures 1b and 1c. Suppose the water veloci-
ty 1s known but the water depth is not. Then it is sensible to chose regression

coefficients as points along a slope of vH220 in the (¢, &)-plane. Obviously an ordinary

filter is a string of points in the plane along the line of zero diffraction €=0. In the
present study, delays typically ran from about .75 to about 2.5 times the estimated
water depth. This allows for another degree of freedom for a second bounce. Such a
model is motivated by knowledge of a more realistic (but much more elaborate) model,
namely a surface-consistent model with an independent bounce at the shot and at the

hydrophone.
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FIG. The

water-bottom depth is measurable

la. Marine profile.
by the pegleg interval shown by an

overlain white rectangle.

FIG. 1b. The entire profile delayed
by the water-bottom vertical two-
way time. This panel is used as a
regressor on Figure la, along with

other panels with other delays.

FIG. 1c. Instead of delay like in Fig-
ure 1b, this panel was diffracted to
the sea floor. An obvious, but
irrelevant feature is the absorption
of energy around the head wave.
The important difference with Figure
1b is the barely perceptible time
shift (up) at wide offset. On the far
trace 1t is about a quarter
wavelength at latest time and about

a half wavelength at 2 sec.
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REGRESSION IN VELOCITY SPACE (figure 2)

Ordinarily the regression of the panels of figures 1b and 1c onto la is done in the
(t,z) space shown. Ordinarily head waves and direct waves are muted. The high
speed of our new Convex C-1 computer allowed me to test another procedure for finding
the regression coefficients. The planes of figure 1 were transformed into velocity space

and displayed in figure 2.

The horizontal axis on the panels shown is “sloth” or inverse velocity squared. So
water sloth 1/1.5?=.45 is near the right hand edge. The diagonal streaks at early time
near the water velocity are from the head waves and direct waves. Observe in figure 2a
how the pegleg sequence moves to slower velocities (greater sloths) at later times. This

is because the RMS velocity of peglegs decreases from the velocity of the primary.

In velocity space, a window can be placed around events of interest. This was
done. Then the regression coeflicients can be computed in the window on the velocity
space panels in just the same way that the regression coeflicients were previously com-
puted on the (£, ) panels. The advantage of being in velocity space is that a window-
ing function can select the signal events. It is well known that the effect of noise in a
regressor is to give too small a regression coefficient. Putting a window around the real
events in velocity space excludes noise. For this data there is not much noise, but
never-the-less better results will be seen to arise with the regression coeflicients taken

from the velocity space.

Ignoring weight functions, it is possible that a regression in the velocity domain
would give the same coefficients as a regression in the offset domain. Theoretically, an
identical result in each space would seem to depend on some kind of Parseval theorem
for velocity space. No attempt was made to establish any such theorem. The topic is

raised to stress that different weighting functions apply to different spaces.
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FIG. 2a. Velocity analysis of a field
profile. The corner of a triangle
marker touches a primary followed
by a sequence of peglegs. Two other
sequences are also visible. (It is
irrelevant that this velocity analysis
1s “moved out”. See Cable Tangent

Stacking, elsewhere in this report.)

FIG. 2b.
delayed by the water-bottom vertical

The entire profile was

two-way  time  before  velocity
analysis. Now the pegleg sequence is
delayed as well as shifted from the
fixed triangle tip to a lower velocity

(higher sloth).

FIG. 2c. Instead of time shifting as

in  Figure 2b, the profile was
diffracted to the sea floor, before the
The pegleg

sequences now overlap those of Fig-

velocity  analysis.

ure 2a better than do the pegleg

sequences of Figure 2b.
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FILTERS AS POINTS IN THE (¢, £) PLANE (figure 3)

The “best” (¢, z )-space deconvolution is defined to be the plane 1a after planes
like 1b and 1c are removed from plane la to give minimum power. The “best” (t, €)-
space deconvolution is defined likewise with figure 2. As usual I used the Conjugate

Gradient Method to do the minimization.

The upper left panel in figure 3 is the original data (after ¢2 gain). The best decon-
volution is shown in the upper right panel of figure 3. In each of the six panels of figure
3 the (t, £)-planes are plotted directly beneath the (¢, z )-planes. At the bottom of the
upper right panel you see a (¢, £)-plane. Beneath the near trace you see the ordinary

designature filter. Along a diagonal line with slope vH220 you see the ““wave equation

filter,” i.e. the regression coefficients, each for a panel such as figure lc.

The middle two panels in figure 3 are conventional (non wave equation) filter
results. You confirm this by inspecting the location of nonzero regression coefficients in
the (¢, &)-plane. The panel on the left is the result of doing the regression in the
(t, z)-domain. On the panel on the right the regression coefficients were determined in
the (¢, v)-domain of figure 2, and the coefficients were then applied in the (¢, 2)-

domain. Notice that the latter procedure is more effective.

The bottom two panels are a wave equation deconvolution without allowing for a
source signature. You confirm this by inspecting the location of nonzero regression
coefficients in the (¢, €)-plane. The regression coefficients lie along a diagonal line that
has the slope of the water velocity squared. On the hard copies it is not evident the ve-
locity space regression coefficients (right side) give a better deconvolution, but the regres-
sion coefficients determined in the velocity space seem to be somewhat more clustered

about the sea floor and twice the sea floor as predicted by the physical model.
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FIG. 3. Profiles each with (¢, £)-space filters beneath.
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CONVERGENCE SPEED (figure 4)

Viewing on a video display, convergence of the conjugate gradient method seems to
take about five iterations. On hard copy as in figure 4, the number five is not so clear.
The 6 panels of figure 4 show successively 0,1,2,3,4, and 10 iterations. On these hard
copies I see little change in the deconvolved data after the third iteration. However, the
filter itself is a little bigger on the tenth than the fourth iteration. This is just more evi-

dence of the superiority of video display.
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FIG. 4. Iterations 0, 1, 2, 3, 4, and 10.
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Figure 5 shows a variety of filter patterns in (¢, £)-space. I draw no definite con-

clusions from the results in figure 5.

CONCLUSIONS SPECIFIC TO THIS DATA SET

1. This wave-equation deconvolution is a textbook case, clearly outperforming decon
before and after NMO.

2. From figures 6 and 7, I conclude the model has suppressed all obvious multiple
reflections. (Edge diffraction leaves some multiple energy near the near-trace trun-

cation).

3. The raw field profile has extra traces beyond 1.8km that I have not displayed.
Their trace spacing happens to be double. The wide spacing causes aliasing for the
diffraction program. Such difficulties suggest further theoretical work before more

experimental work.

4. Weighting functions in velocity space are worthwhile though it is self evident here

only when the operator is crippled by using only convolution (figure 3 middle) and

not diffraction (figure 3 bottom).

5. Apparently, the bubble signature is not an essential aspect of the model, i.e. figure

3 upper right is not evidently better than figure 3 lower right.
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FIG. 6. Expanded plot of test data, 1.e. figure 3 upper left.
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POSSIBLE FUTURE DIRECTIONS
1. A more deductive presentation of the regression equations would be appreciated.
2. Theory should encompass weights both in (¢,  )-space and in (t, v)-space.

3. The new feature of intelligent handling of weathered layer unknown velocity should
be demonstrated in practice, but I am afraid no land data set provides a testbed for

deconvolution where the results will be textbook clear. Perhaps with VSP.
4. This program should see more testing than is likely in a university environment.

5. To show the importance of weighting functions in velocity space it should be sim-
ply a matter of finding a data set with more noise. The trouble is that few data

sets provide textbook quality deconvolutions.

REFERENCES

Claerbout, J., 1985, Simultaneous Pre- and Post-NMO Deconvolution SEP-42, also to
appear in Geophysics in July 1986.

Claerbout, J., 1985, Conjugate Gradients for Beginners, SEP-44, p. 161

Yilmaz, O., and Cumro, D., 1983, Worldwide assortment of field seismic records: released
by Western Geophysical Company of America.

Yilmaz, O., Seismic Data Processing, in press, Society of Exploration Geophysics, Tulsa

SEP-48



