Surface-consistent prediction-error filtering

Stewart A. Levin

INTRODUCTION

In SEP-44 1 described a method for surface-consistent trace balancing. In that arti-
cle I set up a nonlinear least-squares problem and solved it for surface-consistent balance
factors by Newton and quasi-Newton iterations. I indicated that these same ideas could
also be applied to designing prediction-error deconvolution filters. Here I will detail this

application and show some surface-consistent results.

WHAT IS J TRANSPOSE?

Let me review the basic framework I used in SEP-44. Nonlinear least-squares tries
to minimize a functional of the form

2 |1 f 1. (1)
Setting its derivative to zero produces
JTf =0 . (2)
The second derivative of the function may be written
JTJ + K (3)
where
K = E fiv S . (4)
The Newton equations
(JTJ +K)ée = -JTf (5)

determine the location of a zero of the quadratic approximation to the functional

obtained by truncating a Taylor expansion after second order.

In the Gauss-Newton method one assumes that K is small compared to J7J and

looks instead at the equations
JTJ 6z = -JTy (6)
which are the normal equations for the classic linear least-squares problem

Jéx =~ -f . (7)
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Now let’s see what some of these objects are for some simple deconvolution prob-

lems.

1)

Single Channel deconvolution

Here the vector fis given by
J = d -SH(d)b (8)

where d is the data trace, b is the unknown debubble filter, and SH(d) is a matrix
of shifted copies of d:

0 0 0
d, 0 0
d, d, 0
dy dy d,
dy dy
dg
o .
0 0 .
0 0 0

The gradient equation (2) may be written
0 = -SH(d)T (d -SH(d)b ) (9)
which are the normal equations for the least squares problem
d ~ SH(d)b . (10)
The second derivative Hessian matrix is
SH(d )T SH(d) (11)

which is JT J and so K is zero in this (linear) problem. From this we see the
Newton step satisfies

SH(d)T SH(d)6b — SH(d)T (d - SH(d)b) (12)
again normal equations for
SH(d)6b ~ d - SH(d)b (13)

identical to the equation ¢ = 0 since the problem was linear. For the same reason

the Gauss-Newton equations are identical to the Newton equations.

Multichannel deconvolution

By this I mean designing a single filter for a gather of traces. Simply concatenate

the data traces d; and the convolutional matrices SH(d;) and the single channel
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derivation above now applies. To avoid bias, each data trace should be scaled to
the same RMS amplitude. This is one form of preconditioning. Other precondi-

tioners are divergence correction and prewhitening.

Simultaneous pre- and post-NMO deconvolution (Claerbout, SEP-42)

Here
f = (1-rev)NMO t(1 - bub )data (14)

and J 1s
-[ SH,,, (NMO t(1 - bub)data) , (1 - rev )NMO ¢ SHyy (data ) ] . (15)

The Gauss-Newton step is computed from
SH,., (NMO t (1 - bub )data )6,y -+
(1 - rev )NMO t SH,,; (data )65,y = (1 - rev )NMO t(1 - bub )data (16)
or more loosely
8re0 NMO t(1 - bub )data +
(1 - rev)NMO t 6y, data =~ (1 - rev)NMO t(1 — bub)data . (17)
With initial guess bub = rev = 0 this reduces to
0peo NMO t data + NMO t 6y, data ~ NMO t data

as in Claerbout’s article. In that investigation he elected not to proceed beyond the

first Gauss-Newton step, merely indicating how one might proceed.

Forming J¥J we see involves auto- and cross-correlation of data partially decon-
volved by either rev or bub but not both. The second derivative is more complex
than JTJ because the cascade of rev and bub filters is nonlinear. But there is a
component of the nonlinear term K that is independent of the current estimates of
the filters rev and bub. The entries of K are the dot products of the various
derivatives of J with the vector f. Examining J above we can see immediately
that the rev derivatives of the first half of J and the bub derivatives of the second
half of J are identically zero. The remaining crossterms are

6f
_— = SH,” ( ]WO t SHbub (data ) ) ( )

Thus K takes the form of a symmetric 2X2 block matrix with the diagonal blocks
zero and the off-diagonal blocks are dot products of delayed copies of moveout and
gain corrected delayed copies of the data with the current estimate of the decon-
volved data. That this is not just correlation of the input and output of decon

reflects Jon’s underlying observation that neither NMO nor gain correction

SEP-48



Leuvin 304 Surface-consistent decon

commutes with debubble (or dereverb) filtering.

Surface-consistent deconvolution

I discuss the simplest case and defer simultaneous pre- and post-NMO filtering to a
future report. So assume one filter for each shot and one for each receiver. The
appropriate generalization of single gather deconvolution is to minimize the norm of
f where the component traces of f are

Jig = (1-5)(1- 9;) di . (19)
The gradient J of f takes the form

- [ SH((-0)d) ) (1-9)SH, (d) ] (20)

with zero blocks for all other ¢, j in each row. Invoking commutativity of convolu-
tion, we can rewrite this as

- [ SHL((m0)dy) o SH, ((1-2:)d;) ] (21)

With this latter formulation it is immediately apparent that the Gauss-Newton step
is found by solving the least squares system

6s; (1 - g;)dij + 8g;(1 -5 )di; == (1-g; )1 - s;)d;; (22)

Simple enough. But wait. For a conjugate-gradient solution I have to be able to
multiply by J and JT. The  dimensions of J are  big:
NSHOT*LSFILT+NGEO*LGFILT columns and NTRACE*LTRACE rows.
Assuming 10 point filters designed for the 275 52-trace CDP gathers | worked with
for trace balancing in SEP-42 and SEP-44, this works out to be 3,110 columns and
8,967,168 rows. You can’t keep very many 8,967,168 element vectors in core (one,
perhaps two, on the Convex). This means that if | want to work directly on the
overdetermined system (22), I have to anticipate and manage 1/O to and from
secondary storage in addition to all the computation involved in this sparse matrix
multiply. Alternatively, I can sacrifice the superior numerical conditioning of the
QR least-squares approach and use JTJ with, say, SYMMLQ (Paige and Saunders,
1975) to keep all dimensions down to 3,110. In the latter case y —=J 7 Jz looks like:

do itrace=1ntrace
strace=conv(1-g(j),trace(itrace))
gtrace=conv(1-s(i),trace(itrace))
temptr=conv(xs(i),strace)+conv(xg(j),gtrace)
ys(i)=ys(i)+xcorr(temptr,strace)
y8&(j)=ysg(j)+xcorr(temptr,gtrace)

end do
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where conv is convolution and xcorr is cross-correlation. This involves external
I/O as well but only to read the traces once per pass.

How much of a sacrifice is it to take the JT J route? Conventional wisdom is that
the number of conjugate-gradient iterations required for convergence increases and, to a
lesser extent, numerical accuracy decreases. I tested this experimentally for the problem
of designing a single filter for the field profile shown in Figure 1. I chose to design a 132
msec filter with a 60 msec gap. Figure 2 exhibits the filters designed using LSQR and
SYMMLQ. Figure 3 displays the corresponding deconvolved gathers. LSQR needed
seven lterations to generate its filter; SYMMLQ required ten iterations with comparable
tolerances. The low frequency content of the two prediction filters is markedly different
but the deconvolutions are nearly identical. This reflects the lack of corresponding low
frequencies in the data; my filter design was unconstrained outside the bandwidth of the
data. Conclusions: 1) I don’t require the additional numerical accuracy of LSQR in
order to obtain a reasonable deconvolution of these data, 2) the moderate increase in
the number of iterations required by the SYMMLQ design is a modest price to pay for
the corresponding simplification in program design and I/O management.

EXAMPLES

I applied the Gauss-Newton method to the normal equations for the least squares
system (22) to design shot and geophone consistent filters to a Central Valley dataset.
This is the same data I used in SEP-44 for surface-consistent trace balancing although
here I used the unbalanced data. I chose, for no compelling reason, to design shot-
consistent filters with the same 132 msec length and 60 msec lag I used in the single
gather experiments described previously and geophone-consistent filters of length 80

msec with a gap of 44 msec.

Figure 4 is a stack of these data prior to deconvolution. For Figure 5 I designed
only shot-consistent filters (that is one filter for each shot profile), deconvolved with
them and stacked. In Figure 6 I followed this by an additional pass of designing and
applying geophone-consistent prediction-error filters. This is the procedure I used in
SEP-41, Fig. 4, abbreviated there as SG. The corresponding filters are shown in Figure
7. For Figure 8 1 used the Gauss-Newton method to simultaneously estimate and then
apply shot- and geophone-consistent filters (shown in Figure 9) prior to stack. For this
dataset there are no significant differences between the cascaded deconvolution of Figure
6 and the simultaneous deconvolution of Figure 8. Playback clips, based on the 99th
quantile of amplitudes, are within three percent of each other. From this I find no rea-
son to modify my previous conclusion that for these data surface-consistent deconvolu-

tion is no improvement over ordinary single-channel prediction error filtering.
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FIG. 1. Field gather from the Central Valley of California I used to compare two
prediction-error filter design methods.
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FIG. 2. Prediction filters designed to deconvolve the field gather of Fig. 1. The LSQR
filter is an iterative solution to the overdetermined least squares system of equation (10).
The SYMMLQ filter is an iterative solution to the corresponding normal equations (9).
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FIG. 3. Field gather of Fig. 1 deconvolved with (a) the LSQR prediction error filter and
(b) with the SYMMLQ prediction error filter.
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FIG. 4. Stack of Central Valley data. A t-squared gain function has been applied for
playback. The amplitudes in the central portion of the line are attenuated by a (low ve-
locity) gas seep in that area (Toldi, 1985).
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FIG. 5. Stack after shot-consistent prediction-error filtering. Filters were 132 msec with
a 60 msec gap.
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FIG. 6. Stack after cascading shot-consistent and geophone-consistent filtering. The
geophone filters were 80 msec in length with a 44 msec gap.

SEP-48



Levin 312 Surface-consistent decon

SHOT-CONSISTENT FILTERS

N __.._. /,,/\
\\\\\\\\ e
& e

-
s
e ————
e
e
—

N

GCEOPHONE-CONSISTENT FILTERS

N—

A /(/7/':/2 =
*\S“s SNT
, :

A

R

\ GEOPHONE STARTION
N—
}\\ \

FIG. 7. Shot- and geophone-consistent filters estimated consecutively for the stack of
Fig. 6.
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FIG. 8. Stack with shot- and geophone-consistent filters estimated simultaneously. This
nonlinear least-squares solution was obtained by the Gauss-Newton method. This stack
Is very similar to that in Figure 6.
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FIG. 9. Shot- and geophone-consistent filters estinll_ftzd simultaneously for the stack of
Fig. 8.
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SUMMARY

Simultaneous design of surface-consistent prediction-error filters is eminently feasi-
ble even without using the second derivative acceleration of the Newton iteration. The
data I've used to show this have been useful in debugging my procedures but did not

profit from surface-consistent deconvolution. It’s time to look for some good data exam-
ples.
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Weird code, part 4

Even little programs can be weird. One of even tested this one!

4. The best "small" program:
(submitted by Jack Applin [with help from Robert Heckendorn]
<hplabs!hp-dcd!jack> )

main(v,c)char**c; {for(v[c++]="Hello, world!\n)"; (!!c) [*c]&&(v--||--c&&execlp (*c,
*c,c[!!c]+!!c,!c));**c=!c)write(!!*c,*c,!!**c);}
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