277

Elastic finite differences
with convolutional operators

Peter Mora

ABSTRACT

The solution of the two dimensional elastic wave equation is well known by the
finite difference method. Practical points of interest are how to parametrize the elastic
wave equation and how to design the spatial derivative operator. A perfect spatial
derivative operator can be achieved by Fourier transforming, multiplying by ¢ and
inverse transforming. This requires the minimum computer storage. Alternatively, the
derivative can be computed by a convolution in the space domain. As the length of the
space domain derivative operator becomes greater, the accuracy improves and there is
less grid dispersion. The cost of this improved accuracy is more CPU and finally, there is
a length where the convolutional operator becomes slower than the Fourier derivative. If
the size of the problem is fixed, say a simulation in a 4km by 2km block with velocities
and frequencies such that the minimum wavelength is .1 km, then to obtain a desired
accuracy there is some hardware dependent optimal derivative operator. On the
CRAY-1 and CONVEX-C1 the optimum is a convolutional operator that is about eight
points long (the Fourier derivative method is significantly slower). I present an easy way
of designing convolutional derivative operators not based on Taylor’s expansions. Also, 1
describe a method of elastic finite differences based on the stress equations of Kosloff et
al. but where the derivative operators are centered half way between gridpoints enabling
more accurate short derivative operators to be designed. Centering half way between
gridpoints is also useful when using perfect Fourier derivatives because the space domain

representation is more local thereby decreasing annoying spatial Nyquist energy.
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Introduction

The 2D elastic wave equation can be solved numerically using an explicit finite
difference (f.d.) scheme where the spatial derivatives are computed by either convolution
with a space domain derivative operator or by Fourier transforming over space, multi-
plying by ¢ and inverse transforming (Kosloff, Reshef and Loewenthal, 1984 use the
Fourier method). The advantage of using Fourier derivatives or long convolutional
operators Is that the spatial derivatives are accurate to about the spatial Nyquist so the
grid size required for the finite difference computations is greatly reduced making larger
problems feasible. For example, if a two point operator were used then at least 10 grid-
points per wavelength are required to achieve an adequate accuracy while if Fourier
derivatives or a long convolutional operator were used only about 2.5 gridpoints per
wavelength are necessary. Hence, for a two-dimensional problem the two point scheme
requires 16 times more memory. As the operator length is increased the CPU increases
but this is roughly in proportion to the increase in accuracy at least up to a length of
eight points. Actually, an eight point operator takes four times the CPU but is only 3
times as accurate so performing a derivative takes about 33% longer than a two point
operator scheme. However, when the operator is short, the time differencing takes a
significant portion of the CPU. Therefore, two point operator f.d. schemes are probably
slower than the eight point operator f.d. schemes on most computers. Furthermore, as
the grid spacing Az is decreased, the time step At must also be decreased to achieve
stability so more time steps may be required for a two point scheme to solve the same
forward problem. To summarize, relative than a two point scheme, an eight point
scheme requires 16 times less memory and is normally faster. Therefore, eight point
schemes are superior. Note that they are also faster than the Fourier method on the
CONVEX-C1 and CRAY-1S computers.

Convolutional operators can easily be designed by inverse transforming the perfect
frequency domain operator ik, truncating to the desired length, and multiplying by a
Gaussian curve to taper the edges. This is simpler than the Taylor’s expansion approach
which requires some tedious algebra. The following paper describes an elastic finite
difference scheme and illustrates the use of convolutional operators designed by the

above method.
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2D elastic wave equation

The basic equations are describing conservation of momentum in a 2D elastic

medium are

(azx,x =+ Oz, — fa:) - ux (la)

o = o=

(sz,z + T2z, — fz) - uz (lb)

where subscripts after the comma indicate differentiation. Using the relationship between

strain and displacement given by

ey = luy +uy) )
we obtaln
(200 s ~ =10 )s +(Loms - L1,), = s (3a)
p p p
(Lo, %fz)ﬁ(law %fz)z — & (3b)

1 1 1 1 ..
(';sz,:c + —"Uzz,z - ?fz ),z + (?Uzz,z + _p‘azz,z - ?fz ),z = 269:2 (3C)

For an isotropic medium we have the stress strain relationship (Hooke’s law)

Oz — (>‘ + 2:“)69:2: + >\ezz (43’)
Opz = >‘6xz =+ (>‘ + 2,u)ezz (4b)
Oz — 2uexz (4C)

Algorithm

These equations may be solved as follows

for all time {

o(t) — ul(t) Jrom the elastic wave equation, eq. (1)
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u(t) — e(t) Jrom the strain-displacement relation, egs. (8) and (4)
e(t) — ot) Jrom Hooke’s Law, eq. (4)

o(t) — o(t+At) step forward in time using an explicit finite difference formula

Below is a detailed description of this algorithm including the place at which the hor-
izontal and vertical displacements as well as the P and S potentials can be output. Note
that (f,7,z) is used to denote functional dependencies of the variables on time and the
space coordinates. Note that the functions are discretely sampled so ¢, z and z can take
on integral values only (for example time = t At where At denotes the time step).
To avoid cluttering I only include the specific functional dependencies when they are non

integral (e.g. f(z+2) = f(t,z+1z)and g = g (t,z,z) etc.). The algorithm is

interesting because it tells how to use derivative operators that are centered half way

between gridpoints.

Oz — 0 ’ Cp = 0 ) 2 (il: %;Z“ %) =0
Opz — 0 ’ dzz =0 ; Oy (17 %,Z— %) =0
SJor all time {
1 12 1
Xzz 2 ('73_5) = ; z(x+ g)oxx
1 12 1
Xzz 2 (Z - 5) - ;az (Z + E)Uzz
1 13 1 1 1
Xzz,z ((IJ— E) - "; z(zb E)sz (2:— 217 E)
1 12 1 1
Xzz,z (Z 2) - ; a:(x g)azz (x 57— E)



Mora 281 Convolutional operators

U (2—3) = 4, (2-1)- (—lﬁzsz (¢ ,S)S(x—zs 2=t —zq) add vertical source
nZ=3) s

Uy (2-4) = Uy (z- 1) - ——17231 (t,S )3(9: —- 5 —Tg,2—Zg) add horizontal source
pz-3) 7%

U (2-3) = U, (2- %) - —(I—I)Zsp (t,5)0, 3(z 25,2 — + —z5) add pressure source
AZ—3) s

U (2- 1) = u,(2-32) - *II‘ZSP (t,8)a, 3(x -3 -25,2-25) add pressure source
pz=3)7%

U, (2-3) = u,(2-2) + (—11—)235 (t,5)8, 5(x 25,2 2 —zg) add shear source
AZ=3) s

Uy (z-2) = Uy (z- 1)~ p(Tll—)EsS (t,5)0, (g(x— 3 —Tg,2—Zg ) add shear source

— 2/ 8

Ug,z — z(x_%)dz(z_%)
Ug z(x_%:z_%) = z(z_'_‘;‘)dz(x_';')
U, ;. =— z(z_%)dz(z__é)
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output ¢ = vXu = (u, ,(z 22— 3) ijz’z (z 2,z——é))**6(z—%,z—%) }
€z — Uz
e.zz - iL.z z
1
€z (.’L‘ 2;2— %) - E(ua: 2 (13 2:3_ %) + uz,x (.Z‘ 2:2" %))

g

”zz - (>\ + 2/‘)%’:“: + >‘.e‘zz
b:zz - >\é‘zz + (>‘ + QN)é'zz

Goe(-32-3) = 2m(s- 32~ e (z- 12— )

Ozz(t +1) = Oz + At é’xx (t_{_%)
Uzz(t _'_1) = 0, + Ato‘-zz (t+ é)

Oy (t +17$_ ’;‘:2_ %) — Og; (III— %:Z_ %) + Ato.-xz(t + %72:“ %;2_ %)

absorbing boundaries

free surface

} ’
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Note that the values s, (t,5), s,(¢,5), sp(t,5) and sg(t,S) are the source time
functions respectively for vertical, horizontal, pressure and shear sources for shot number
S located at (zg,z5). Note also that the output obtained by algorithm (5) is actually
for the second time derivative of displacement, % rather than displacement. This is most
easily taken into account by using the second integral of the desired source time history
as the source function, i.e. use fdtfdts o(t,5) rather than s,(¢,5) in algorithm (5)

(where oo =z, z, P or §).

Sources

The introduction of the approximate §-function sources § in algorithm (5) requires
some special care. If a force is applied at a single point on the finite difference mesh we
are really applying a spatially band-limited source with sharp cutoffs at the spatial
Nyquist frequency. This is undesirable because the sharp spatial frequency cutoff results
in a non-local sinc source distribution and consequently the appearance of significant
Nyquist energy. This effect is aggravated because the &functions in algorithm (5) are
located half way between gridpoints and derivatives of delta functions are required for
pressure and shear sources. Kosloff et al. 1984 suggest using a bell-shaped source distri-
bution as a band limited approximation to the &function’s to decrease this undesirable

Nyquist energy and make the source
oz ,2) — exp-flatis?) (6)

Kosloff et al. 1984 recommend a value of S=1. An alternative is a cubic spline impulse

response which is very local and has a fairly flat amplitude spectrum almost to Nyquist.

Spatial derivative operators

The approximate derivative operators 3 in algorithm (5) should be chosen depend-
ing on hardware to maximize efficiency. They may be either the perfect Fourier deriva-

tive operators, l.e.

>

il = (9]* — F_ll'k'F , (78,)

where F' denotes Fourier transformation or they may be convolutional operators, i.e.

»

é]. = 9. * (7b)

-~

An easy way to design convolutional operators without tedious Taylor’s expansions is as

follows: Start with the ideal frequency domain response ¢k . Inverse transform to the
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space domain and truncate to the desired length. The corresponding frequency domain
response 1k is obtained by convolving i by a sinc function. Therefore, ik looks like ik
with bumps in it. These bumps would cause significant grid dispersion in any finite
difference scheme (and even instability) unless the truncation length was very large. The
velocity as a function of frequency is v(k) = k/k so we desire v(k) =~ 1 for
minimal grid dispersion. The bumps can be smoothed out by “low pass filtering” the

bumpy ¢ . In other words, the space domain operator must be multiplied by a smooth

Gaussian curve to taper the edges.

The resulting operators would still not be very accurate if the space domain
representation of the ik operator was centered at z =0. This is because its space
response that dies off very gradually and so there are still truncation effects, i.e. bumps

in k. However, if the derivative is centered at z = 3 the space domain response dies

off much more rapidly and so is more local and hence # would have smaller bumps.

The reason is that the
k
zero energy. For example, convolution of a two point operator centered at z = 0 with

[ (z) yields (f (z+ 1)-f (z- 1))/(2Az ) while convolution of an operator centered at

tk exp(tk Az /2) | = k all the way from zero frequency to

Nyquist while =k up to but not including Nyquist, the Nyquist frequency has

z = - 3 yields (f (z + 1)-f (z))/Az which is accurate to twice the frequency. There-

fore, the convolutional operators are centered half way between gridpoints, at either

Az /2 or Az /2 depending on where they are to be applied in the finite difference algo-

rithm.

Figure 1a shows the frequency domain response of a perfect derivative operator, an
8 point operator and a conventional 2 point operator (the perfect operator is centered at
z = 0 in the space domain while the two convolutional operators were centered at

¢ = 1). The 8 point operator is very accurate to about 3/4 of the Nyquist while the

two point operator is only accurate to about 1/4 of the Nyquist. The same operators are
shown in the space domain in figure 1b. Note that if Fourier derivatives were more

efficient on a particular computer then they should also be centered at z = 3 to make

the tails die more rapidly thereby avoiding the Nyquist artifacts observed by Kosloff et

al..
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Boundaries

If the Fourier derivatives are used, the medium is cyclic so the only easy way to
include absorbing boundaries is to have a region of absorption surrounding the zone of
interest. This approach also has the advantage that there are no angle restrictions so
waves entering the absorbing region at any angle are absorbed. This method is very use-
ful even if Fourier derivatives are not used because it avoids complicated specialized cod-
ing of non-reflecting boundaries. This is a massive headache when the derivative opera-
tor may be any length (say eight points) depending on computer hardware. It is compli-
cated enough even in the acoustic case with two point derivative operators (see Clayton

and Engquist, 1980, solved this problem using the one-way wave equations of Claerbout,
1976).

For the above reasons, an absorbing region is preferred rather than an explicit
boundary condition. Cerjan et al. 1985 suggest simply multiplying the variables o and &
by an attenuation factor at each time step. Their attenuation function has the Gaussian

form

A = exprz a4 ) (8)

and typically grades from 1 at the start of the attenuating region z4 to a minimum
value of about .85 or .9 . Tests indicate that a value of ¥=.02 works reasonably well
with an attenuating border region that is 20 gridpoints wide. The attenuation is applied
wherever absorbing boundaries are required and so at most 40 extra gridpoints are
required in both directions. Thus, CPU time increases by around 40% for typical sized
problems, a small price to pay for the ease of coding (perhaps efficiency could be
improved by using shorter derivative operators in the attenuation region where grid
dispersion is irrelevant). Etgen (pers. comm.) suggests an improvement can be obtained
by gradually decreasing the velocities in the attenuating region (while increasing the den-
sity thereby keeping the impedances fixed to minimize the weak reflection amplitudes).
Then the waves would spend more time in the boundary region and so suffer a greater

attenuation.

Stability, accuracy and time differencing

Kosloff et al. 1984 give the stability criterion for the perfect Fourier derivative

At < min (Az Az ) (9)

Vmin

However, to avoid excessive numerical dispersion (finite difference inaccuracy) they
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suggest a choice of At which is .2 of this stability criterion. Depending on the problem,
it may be possible to increase At and hence speed computations. Perhaps other choices
of time derivative operators may be more efficient though such choices are not easy
because of numerical stability requirements. Like the spatial operators, the worth of such
choices would depend on the computer hardware. One method is by Taylor’s expansions
to get higher order time differencing schemes but this would be very complicated in the
elastic case (see Dablain, 1986, for the acoustic case). One other alternative may be by
using something like the 1/6 trick (Claerbout, 1976). Unfortunately, while it works well
for implicit finite differences, it seems to lead to an unstable explicit scheme (in the 1D
acoustic case). Anyway, it is not clear how to apply this trick to inhomogeneous elastic
finite differences. Implicit methods which offer unconditional stability may be the answer
but are not desirable because of their great complexity in more than one dimension

unless approximations such as splitting are made.

NUMERICAL EXAMPLE

A shot simulation over a simple velocity model consisting of a layer over a half-
space is used to illustrate the method. The properties of the upper layer are vp = 3
km/sec, vs = 1.7 km/sec and p = 2 gm/cc while the properties of the underlying half-
space are vp = 6 km/sec, vs = 3.4 km/sec and p = 2 gm/cc. A grid spacing of at the
origin and was a pressure type source with a second derivative Gaussian far field wavelet
(in displacement). Absorbing boundary regions were used all around the model. Figure
2a shows a snapshot of the waves at £ = .96 seconds. The main events are the direct P,
reflected P, reflected S, transmitted P, transmitted S and P and S head waves trailing
from the transmitted P in the upper layer. The shot gather is shown in Figure 2b (note
that due the use of approximate é-functions, the source generated a small amount of S-
wave energy). There is negligible grid dispersion despite the fact that at the 90 percentile
frequency there were only 2.8 gridpoints per wavelength. The 90 percentile frequency in
this example was 30 hertz and is the frequency at the 90 percentile of the amplitude
spectrum. Also, note that there is no noticeable reflection from the absorbing boun-

daries.

SEP-48



Mora 287 Convolutional operators

CONCLUSIONS

An elastic finite difference algorithm is described based on the stress equation
approach (Kosloff, et al. 1984) but using derivative operators that are centered half way
between gridpoints. Because of this centering it does not have the Nyquist problems that
plagued the Fourier derivative method described by Kosloff. A simple non-tedious
method for designing convolutional derivative operators is described. This makes it easy
to design customized operators to maximize efficiency on any given computer. On the
CRAY-1S and CONVEX-C1 the optimal operator is eight points long, being, more than
5 times faster than the Fourier derivative method and slightly faster than a two point

scheme (and requiring 16 times less memory).
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0 wavenumber nyquist

FIG. 1a. Wavenumber domain plot of three approximations for 8,, (a) is the perfect
operator (ik in the wavenumber domain), (b) is an 8 point convolutional operator in the
space domain, and (c) is the conventional 2 point finite difference operator.

-11Ax 0 distance 12Ax

F'IG.- 1b. Space domain plot of three approximations for 9, (a) is the perfect operator
(s in the wavenumber domain), (b) is an 8 point convolutional operator in the space
domain, and (c) is the conventional 2 point finite difference operator.
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FIG. 2a. Snapshot at ¢t = .96 seconds of waves propagating in the layer over a half-
space model. The horizontal component of displacement is shown.
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FIG. 2b. Shot gather for the layer over a half-space model. The vertical component of
displacement is shown.

SEP-48



290

Date: Thu, 6 Mar 86 21:10:40 pst
From: Jon Claerbout <jon>

To: chuck

Subject: old times

I'm glad to see that our gang still has the intestinal fortitude
to bring a computer to its knees.

Date: Thu, 6 Mar 86 21:11:25 pst
From: Chuck Sword <chuck>

To: jon

Subject: Re: o0l1ld times

But now we can bring it to its knees 12 to 20 times faster.



