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Shot-profile Dip Moveout

Biondo Biondi and Shuk: Ronen

ABSTRACT

All the known Dip Moveout (DMO) methods require the seismic data to be sorted in midpoint
and half offset coordinates. In this paper a DMO method for shot profiles is proposed.

The DMO operator in shot profiles is defined in a way analogous to the well known operator
in constant-offset sections. The two operators are found to be equivalent and to have impulse
responses with the same projection on the zero offset plane, i. e. the stacking plane. Therefore the
application of DMO in constant-offset sections or in shot profiles gives the same stacked section.
DMO transforms the shot profiles to zero offset data to which may be applied any post stack
migration.

Unfortunately the shot-profile DMO operator is space and time variant; thus its direct appli-
cation would be computationally expensive. Instead, after a logarithmic transformation of both
the coordinates the operator becomes time and space invariant, and then the procedure may be
performed efficiently as a convolution in Fourier domain.

The performance of the algorithm is shown in field data examples and the results are compared
with the conventional DMO in constant-offset sections.

The sensitivity to inaccurate NMO velocity and the possibility of performing residual velocity

analysis is also analyzed with the help of some synthetics examples.

INTRODUCTION

Dip Moveout correction is a well-known method that images dipping reflectors that otherwise
would be lost in the conventional stacking procedure. Many of the known algorithm for prestack
full migration operate in shot profiles but all prestack partial migration methods require sorting
the data to constant-offset sections. In this paper a method is proposed to perform DMO in shot
profiles.

Shot profiles have the theoretical advantage that the data was recorded from the same single

physical experiment, it is then possible to adapt the processing to acquisition geometry changes
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or velocity profile variations. A practical advantage is an easier management of the whole data set
and a straightforward parallel implementation of the algorithms. Another reason to process the
data in field coordinates is that usually profiles are better sampled than constant-offset sections;
thus operating in shot profiles often avoid to bother with aliasing problems.

Conventional DMO methods are computationally expensive; the procedure proposed is instead
efficiently implemented as a fast convolution in the frequency domain. This is possible after
a transformation of coordinates that makes the DMO operator time and space invariant. An
advantage to implement the procedure as a fast convolution in shot profiles instead of constant-
offset sections is that, if the geometry is constant and the lateral velocity variations are mild along

a line, it is possible to compute the DMO operator only once for the whole line.

THE DMO OPERATOR IN SHOT PROFILES
We now derive the DMO operator in shot profiles in a similar way to its equivalent in constant-
offset sections (Hale, 1984).

The arrival time ¢ of the reflection from a dipping bed in field coordinates is given by the
equation (Claerbout, 1985)

(1)

. \/4szsin2a+4sfsin2a+ I
= 2
v

where s is the distance between the shot and the point where the dipping reflector meets the
surface, f is the full offset, « is the dip of the reflector and v is the medium velocity, assumed
constant; velocity variations will be discussed in a following section. If we apply to the equation

(1) the dip corrected NMO transformation

f2cos? o
t=A\ti+—z— (2)

we get the following well known kinematic relation in zero offset time ty and midpoint y

2(s+ f/2) sina _ 2y sina
v N v

to =

The dip corrected NMO transformation may be performed as two cascaded processes:

2
NMO t=\/t?,+£—2- (4)

and
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2 ain2
DMO te = [tz — LS (5)

v2

From equation (3) the dip a is easily expressed in the frequency domain as

sina_ k, ks
I

6
v 2(.00 wo ( )

where wog is the angular frequency corresponding to to, ks and k, are the wave numbers of the
transformed full offset and midpoints. Substituting the last equation in equation (5) we finally

find the change of variables that performs DMO in shot profiles

f2k2
tp = 4|td — L. (7)

The transformation (7) may be performed in the Fourier domain in a similar way to Hale’s
DMO; if we define

oz (8)

to get the Fourier transformed pressure field Py(wo,ky), after application of DMO to the shot
profile after NMO pp(t,, f), we can compute the double integral

Po(wo, ky) = / / dtndf A Le0tnA gkelp (2 f). ©)

This operator is not only time variant but also space variant and thus its application is more
expensive than its equivalent in constant-offset sections.

One example of the direct application of the operator in Fourier domain to four impulses is
shown in Figure 1. As it is clear from the figure, and it is possible to derive with a stationary

phase approximation of the double integral in (9), the impulse response of the DMO operator in

() () =+ @
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Figure 1: Shot profile DMO impulse response to four spikes. This figure was obtained by
numerically computing the double integral in equation (9). The curves are ellipse of equation (10)

and passing through the origin.

where tg is the impulse time and fj is the impulse full offset. For different ¢y and fo the axes of the
ellipse change but the curve always passes through the origin. This impulse response could have

been derived by a change of variables from the conventional ”smile” in constant-offset sections
(Deregowski and Rocca, 1981)
t)? Y- yo)2
- =1 11
() +(5") =1 )

where y = s 4+ f/2 is midpoint and h = f/2 is half offset.

Actually the two impulse responses have the same projection on the zero offset plane; this
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means that an impulse in the data will produce the same result in the stacked section using either
DMO operator. In other words applying DMO to the data in constant-offset sections or in shot
profiles will give the same stack; for the stacked section the two operators are perfectly equivalent.

The application of DMO transforms the shot profile into a real zero offset section, it is then

possible to process it with post stack algorithm, as for example, a post stack migration.

A time and space invariant DMO

The DMO operator in shot profiles that we found in the preceding section is time and space
variant. Its computational cost is overwhelming. Instead after an appropriate change of variables
of both the coordinates it becomes invariant. The right change of variables is of logarithmic type

and was proposed by Bolondi et al. (1982) and Wang et al. (1985). Let
7 = log(t) and ¢ = log(f) (12)
in the expression (10). We will then have the curve
(exp(r — 7)) + (exp(¢ — ¢o) — 1)* =1, (13)

that is the impulse response of the operator in the new coordinates. This curve now depends only
on the differences (7 — 7p) and (¢ — ¢o), therefore the operator is invariant. The convolution with
this impulse response is efficiently performed with a multiplication in Fourier domain.

The proposed algorithm of DMO in shot profiles is thus composed of three basic step. The first
is stretching the data according to transformations (12); the second is convolving the stretched
data with the invariant operator in the Fourier domain. The final step is to transform back the
data to the original time and offset space with an inverse change of variables.

One theoretical problem for the application of the algorithm is that the logarithmic transfor-
mation of variables is not defined at time zero and at zero offset. In practice the first time samples

are seldom interesting and we will usually never have a zero offset recording.

Field data results

The performance of the DMO algorithms was tested with a data set from the Gulf of Mexico.
Figure 2 and 3 show the whole stacked sections obtained with and without the application of
DMO in shot profiles.

The following figures show a window of the stack; where the differences owing to the application
of DMO are more evident. The goal of the DMO here is to properly image the fault plane reflection

and the tails of the diffraction hyperbolas. In Figure 4 a conventional stack is shown. The fault
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Stack without DMO
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Figure 2: Stacked section of a data set from Gulf of Mexico. This stack was obtained without

the use of DMO.
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Stack with Shot DMO
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Figure 3: Stacked section of the same data set of Figure 2. This stack was obtained after
DMO in shot profiles. Shot profile DMO has imaged the dipping events in the stack.
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reflection has completely disappeared and the diffraction hyperbolas are weak. Instead in the
stack after applying DMO in shot profiles (Figure 5), the fault reflection is present and the
diffractions are easily noticed. Figure 6 shows for control the stacked section after applying DMO
in constant-offset sections. The two results in Figure 5 and Figure 6 are almost identical, there is
only a slight difference in the shallow part where DMO in shot profiles has better imaged some
diffraction hyperbolas.

SHOT DMO AND RESIDUAL VELOCITY ANALYSIS

For a practical application of the shot-profile DMO it is interesting to know if it is correct to
perform a residual velocity analysis and a consequent residual NMO (RNMO) after DMO. The
reason is that velocity analysis is more accurate after DMO than before, because the effects of
the dip on the stacking velocity have been removed.

The application of a RNMO after DMO introduces some error because in the derivation of
DMO in shot profiles, equations (4) and (5), the DMO process follows NMO and the two operators
do not commute. We want to compare the error due to the application of the operators in the
wrong sequence for the shot-profile DMO and the constant-offset DMO.

In the appendix it is shown that NMO and DMO do not commute because the DMO shift is
dip dependent. The error introduced applying a RNMO after DMO depends mainly on the DMO
sensitivity to inaccuracies in NMO velocity ; more exactly it depends on the DMO sensitivity
to incorrect dip information in the data and on the dip error introduced by an inaccurate NMO
velocity.

In both DMO methods the shift depends on the dip in the same way, and therefore their
sensitivity to a dip error should be equivalent. On the contrary, an error in the NMO velocity has
more influence on the dips in shot profiles than in constant-offset sections. Consequently shot-
profile DMO is more sensitive to errors in NMO velocity than DMO in constant-offset sections.

The following synthetic examples confirm the theoretical result, but they also show that a
residual velocity analysis and RNMO are still feasible and helpful after shot-profile DMO.

The synthetic data set was generated assuming a flat reflector and one bed dipping at 60°, in a
medium of constant velocity equal to 2000 (m/sec), the shot interval was assumed to be 25 meters
and the group interval equal to 12.5 meters. In Figure 7 a CDP gather and the correspondent
contour plot of the semblance function of the stacking slowness and time are shown. The upper
hyperbola is the dipping bed reflection and the lower the flat bed reflection. Figure 8 shows the
same CDP gather after NMO with the correct velocity followed by DMO and inverse NMO. The
plots on the left are obtained after the application of shot-profile DMO and the ones on the right
after constant-offset DMO. The corresponding semblance plots for velocity analysis are shown too.

The results after a correct NMO are equivalent. Note that in the CDP gather after constant-offset
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Figure 4: Window of the section in Figure 2. The stack without DMO has suppressed the
dipping events,
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Stack with Shot DMO
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Figure 5: Window of the section in Figure 3. The DMO in shot profiles has restored the
dipping events like the fault plane reflection and the diffraction hyperbolas.
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Stack with Constant-Offset DMO
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Figure 6: Same window of the data as in Figure 4 and 5, but the data was stacked after ap-

plying conventional DMO in constant offset sections. It is hardly possible to notice any difference
between this figure and Figure 5.
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Figure 7 : Synthetic CDP gather and correspondent semblance function for velocity analysis.
The upper hyperbola is the reflection of a 60 degree dipping bed and the lower one of a flat
reflector. The velocity of the medium was supposed constant and equal to 2000 (m/sec) (slowness
equal to .0005 (sec/m)).

DMO some aliasing noise is present.

The sensitivity to an inaccurate NMO velocity is analyzed in Figure 9 and Figure 10. They
show the same CDP as in Figure 8 but with different NMO velocities. In Figure 9 the NMO
velocity is 1800 (m/sec), 10% lower than the correct one, and in Figure 10 is 2200 (m/sec), 10%
higher than the right one. The residual velocity analysis after shot-profile DMO is slightly off by
about 3% in both cases; on the contrary the residual velocity analysis after DMO in constant-offset
sections is almost perfect.

The stacks corresponding to the precedent CDP gathers are shown in Figure 11 and Figure
12. The stacking velocity was always chosen to be the right one for the flat reflector, that is the
medium velocity. The stack after DMO in shot profiles is somewhat more sensitive to errors in

NMO velocity.
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Figure 8: The same CDP gather of Figure 7 after NMO, DMO and inverse NMO: a) with shot
profile DMO, b) with constant-offset DMO. The velocity used for NMO is the correct one (2000
(m/sec)). The correspondent velocity analyses are shown next to the gathers. Because the NMO
velocity is correct both methods correct the dip effect perfectly. In the gather after constant offset

DMO there is some aliasing noise that will disappear in the stack.

DMO AND VELOCITY VARIATION

Constant-offset DMO has been generalized to handle with a good approximation velocity
variations with depth (Bolondi et al, 1984; Hale, 1984). It is likely that the same considerations
may be extended to generalize the shot-profile DMO.

On the other hand a generalization to lateral velocity variation of the conventional DMO is
more difficult because it would result in a space variant operator, with a consequent important
increase in computational cost. This is a problem in constant-offset sections because all the line is
Dip Moved Out at the same time. A shot profile is only a small part of the data and it depends on
a well localized part of the subsurface; it is then possible to adapt the processing to lateral velocity
variations, with a good approximation, leaving the operator space invariant within a single shot

profile, but changing it from shot to shot.
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Figure 9: The same CDP gathers of the previous figures but now with a NMO velocity equal
to 1800 (m/sec), that is 10% lower than the correct one: a) with shot profile DMO, b) with
constant-offset DMO. The conventional DMO is less sensitive to errors in NMO velocity than

DMO in shot profiles. The error in the residual velocity analysis after shot profile DMO is about
-3%.

CONCLUSIONS

The proposed algorithm has all the advantages of processing the data in field profiles, and it
produces equivalent stacked sections to those produced by DMO in constant-offset sections, as has
been shown with field data examples. The possibility to perform a residual velocity analysis and
a residual NMO after shot-profile DMO has been shown. It is then possible to conclude that all
prestack processing can be performed in shot profiles without resorting the data in midpoint and
offset coordinates; actually only some CDP gathers used for velocity analysis need to be sorted
out.

The sensitivity of the method to depth and lateral velocity variation must be analyzed, but it
seems that a shot profile is a more flexible domain than constant offset sections to approximate
the necessary modification to the DMO operator.

The algorithm, thanks to the logarithmic change of variables, is faster than DMO in constant-
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Figure 10: The same CDP gathers of the previous figures but now with a NMO velocity equal
to 2200 (m/sec), that is 10% higher than the correct one: a) with shot profile DMO, b) with
constant-offset DMO. The error in the residual velocity analysis after shot profile DMO is about
+3%.

offset sections. Of course the change of variables would work also for a constant-offset DMO; but
one computational advantage to work in shot profiles is the possibility to precompute the operator

and then use it for all the shot profiles of the survey.
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Figure 11: Three stacks of the synthetic data set using the shot profile DMO. The stacks were
obtained using different NMO velocities: a) NMO with the correct velocity, b) with a 10% lower

velocity and c) with a 10% higher velocity. The result degrades slightly owing to an uncorrect

NMO velocity.
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Figure 12: Three stacks of the synthetic data set using the constant offset DMO. The stacks
were obtained using different NMO velocities: a) NMO with the correct velocity, b) with a 10%

lower velocity and c) with a 10% higher velocity. Note that the aliasing noise visible in the gathers

has disappeared in the stacks.
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APPENDIX

In this appendix we want to show that the error introduced applying the three step process
NMO, DMO and RNMO is owed mainly to the DMO sensitivity to an inaccurate NMO velocity.
We show it for constant velocity v and reflections of a dipping bed of dip c.

The dip corrected NMO transformation

2 2
t= t§+f°v# (A1)

may be performed as three cascaded processes:

f2

NMO t=4/t3+ o7 (A2)
, f?sin’a

DMO l1=\/t3 — Tz (43)
f2

RNMO ta =4 [t8 + = (A4)

where vy and vy are such that

—_—— e —, (A5)

Here we assume that v; is greater than v, the extension to the other case is immediate. The three
step procedure is exact if the term # = sin o/v is the correct one; in practice 8 is estimated from

the data using the relation

ks
- =% _ & A6
B=— 200~ w’ (As)
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when the input to the DMO process is not the data transformed with the right NMO velocity v
but with the larger velocity vi. The estimated 8 will be different from the correct one and equal

to B1. We can express the ideal and correct result of the whole process as

res = RNMO DMO(8) NMO data, (A7)

and the wrong one and actually computed as

resy = RNMO DMO(B1) NMO data. (A8)

All the operators are linear and the error may be the expressed as

err =res —res; = RNMO (DMO(B) — DMO(f1)) NMO data. (A9)

Because the NMO operators are close to unitary, or better pseudounitary (Biondi and Claerbout,
1985), the error depends mainly on the difference DMO(B) — DMO(B;).
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