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Nonlinear 2D elastic inversion
of multi-offset seismic data

Peter Mora

ABSTRACT

The treatment of multi-offset seismic data as an acoustic wavefield is becoming
increasingly disturbing to many geophysicists who see a multitude of wave phenomena,
such as amplitude-offset variations or shear wave events, which can only be explained by
using the more correct physical equation, namely the elastic wave equation. Not only
are these phenomena ignored by acoustic theory, but they are also treated as undesirable
noise when they should rather be used to provide extra information about the sub-

surface such as S-velocity.

The problems of using the conventional acoustic wave equation approach can be
eliminated by starting afresh with an elastic approach. One framework has been pro-
vided by Tarantola (1984) who described how to do an elastic inversion of seismic data
in very general situations for the Lamés parameters and density. In this paper, new
equations have been derived to perform an inversion for P-velocity, S-velocity and den-
sity as well as the P-impedance, S-impedance and density since these are better resolved
than the Lamé€ parameters. The inversion is based on nonlinear least squares and
proceeds by iteratively updating the earth parameters until a good fit is achieved
between the observed data and the modeled data corresponding to these earth parame-
ters. The iterations are based on the preconditioned conjugate gradient algorithm. The
fundamental requirement of such a least squares algorithm is the gradient direction
which tells how to update the model parameters. This can be derived directly from the
wave equation and it may be computed by several wave propagations. Although any
scheme could in principle be chosen to perform the wave propagations, the elastic finite

difference method is used because it directly simulates the elastic wave equation and can
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handle complex and thus realistic distributions of elastic parameters. This method of
inversion is costly since it is similar to an iterative prestack shot-profile migration but
has greater power than any migration since it solves for the P-velocity, S-velocity and

density and can handle very general situations including transmission problems.

Three main weaknesses of this technique are that it requires fairly accurate
knowledge of the low frequency velocity model beforehand, it assumes Gaussian model
statistics and that it is very computer intensive. All these problems seem surmountable.
The low {requency information can be obtained either by a prior tomographic step, or by
the conventional NMO method or by adding an additional inversion step for low fre-
quencies to each iteration; the statistics can be altered by preconditioning the gradient
direction perhaps to make the solution blocky in appearance like well logs; and with
some Improvements to the algorithm and more parallel computers, it is hoped the tech-

nique will soon become routinely feasible.
INTRODUCTION

Elastic waves or acoustic waves?

Seismic data contains many features such as shear reflections and amplitude-offset
variation that provide useful information about the P-velocity, S-velocity and density.
These are becoming increasingly evident as the use of longer cables and multi-component
recording becomes more widespread. Conventional seismic processing and inversion
based on the acoustic wave equation do not take these features into account and they
therefore treat this useful information as undesirable coherent noise. The problem is that
the acoustic wave equation (which assumes the earth is a liquid) was used to derive the
algorithms rather than the more physically correct elastic wave equation (which assumes
the earth is a solid). Therefore, if we are to use all the information contained in seismic
data effectively we must commence to use the elastic wave equation and build up a new
framework (or expand the old one) for the treatment of seismic data. Once the elastic
wave equation is used as a basis for handling seismic data the various seismic events usu-
ally considered to be noise such as ground roll, multiples, mode conversions and S-wave
events can be treated as signal and should actually be helpful (I include multiples in this
list for completeness and because the elastic wave equation handles their amplitudes
more correctly than the acoustic wave equation). In fact, almost all seismic “noise”

ceases to be bothersome.
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Inversion or conventional processing?

Another question often debated is whether inversion or standard processing
methods should be applied to seismic data. Most practicing geophysicists would not
hesitate to say that while the philosophy of inversion, to get a quantitative estimate of
the physical properties is appealing, they would prefer to use standard methods because
they do not believe inversion can work well in practice. Actually, the devout inverters
would reply that standard methods are inversion too because they try to obtain a pic-
ture of the subsurface. The main difference is that standard methods are one step
processes and that the result is not a quantitative estimate of the physical properties, for
instance, migration gives a relative reflectivity picture and not a P-velocity picture. In
general, standard methods are not required to pay heed to the exact properties of the
earth but concentrate on obtaining a good image of the subsurface. In practice, the pro-
duct of conventional processing would usually be a quantitative estimate of the low fre-
quency part the P-velocities (from velocity analysis) and a relative estimate of the high
frequency part of the reflectivities (from migration). Ultimately, it will be shown in this
paper that the picture that can be obtained by inversion and that obtained by the con-
ventional approach (migration) are very similar. The strength (and also weakness) of the
inversion philosophy is that it tries to account for the seismic data in terms of the earth
properties using the known equations of physics. The reason it is also a weakness is that

it often leads to impractical algorithms.

In this paper, the method of least squares is invoked on a grand scale and by using
the elastic wave equation it is possible to make use of all the amplitude information in
the seismic data and perform an inversion for the P-velocity, S-velocity and density. The
result of the inversion is the most likely set of physical parameters that could have given
rise to the observed data (provided any energy not accountable by the elastic wave equa-
tion is uncorrelated Gaussian noise). It is believed that with the rapid development of

more parallel computers that this method will soon be routinely feasible.

Inversion philosophies

Inversion is more complicated than the forward problem which attempts to simu-
late the equations of physics. This is because it attempts to solve a problem which is
inherently unstable. For instance, in seismic exploration we attempt to predict rock pro-
perties based on the appearance of waves which in the past have propagated through
some distant rocks. If the effect of the rocks on the waves is not great then in the pres-
ence of any noise we cannot hope to predict the properties of the rocks. In other words,

it is sensible to only try to predict those properties which can be resolved given the
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quality of the data. If a parameter is not well resolved then we want to restrict the solu-

tion in a logical way using our a priori knowledge.

To make matters more difficult, the seismic inverse problem is nonlinear (i.e. no
linear relation exists between the seismogram amplitudes and the earths properties).
Despite the nonlinear nature of the seismic inverse problem, most literature on seismic
inversion concerns linearized methods (see Cohen and Bleistein, Stolt and Weglein,
Lailly, Clayton and Stolt). The reason for this is that through functional analysis, the
linearized problem is well understood. The resolution problem has been studied and
largely solved by Backus and Gilbert in the linear case. To advance, we will first con-
sider the ideal inversion, namely, mapping out the probability functions of the desired
physical properties based on all available information (Tarantola and Valette, 1982).
However, this is completely impractical for most inverse problems because it would take
an almost infinite amount of time on any computer. Sometimes the Monte Carlo
methods may be utilized to map partially the probability functions or solve for the single
most probable set of model parameters (see Rothman, 1984). Unfortunately, such
methods require the forward problem to be solved many times so for most seismic
inverse problems where the forward problem consists of a computationally intensive
wave propagation, Monte Carlo methods are too costly. Hence, we must compromise
between practicality and elegance of the inversion. This paper constitutes my comprom-
ise at the present time. The inversion is based on the relatively fast and tractable least
squares optimization method. It does not use a linearized wave equation for the solution
of the forward problem but rather uses the full elastic wave equation. The iterative least
squares algorithm requires a gradient direction which can be derived directly from the
wave equation (see also Tarantola, 1984, for the elastic case or Lailly, 1984 for the acous-

tic case).

INVERSE THEORY

Introduction

In general, the process of inversion can be considered as the location of the single
most probable set of model parameters m given some data observations d and
knowledge of the probability distributions of m and d (see Tarantola and Valette, 1982).
In the case of multi-offset seismic data inversion for the elastic properties of rocks m, the
computation of d(m), the common shot gathers, represents elastic wave propagation
which consumes large amounts of computer time. Therefore, the linear function space

based inversion schemes which require relatively few forward problems (wave
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propagations) to be solved are preferred over the more general Monte Carlo schemes
which would require many forward simulations. The reason is that linear function space
methods assume local linearizability of d(m) and so can progress steadily uphill on the
probability function until the nearest peak is located. Unfortunately, this may not be
the biggest peak (most probable solution) which is the price paid for the requirement of
only a few forward simulations. For tractability, the least squares optimization method
which assumes Gaussian probability distributions for model parameters and data errors
has been chosen. This should often turn out to be a reasonable assumption at least for
the data errors when there are many independent sources of noise considering the central
limit theorem which states that the sum of independent noise tends to be Gaussian dis-
tributed. However, the model parameters, i.e. the physical properties of the earth are in
general non-Gaussian distributed but this can be at least partially handled, though not
rigorously, by allowing the model mean to vary with iteration (see Mora, 1986) or by

modifying the solution at each iteration by using some statistical arguments (Harlan,
1984).

Least squares and the preconditioned conjugate gradient method

The conjugate gradient (c.g.) method of nonlinear least squares has been chosen
because of its simplicity yet good convergence properties. I begin with a description of
nonlinear least squares and the preconditioned gradient method and later extend this to

make use of the so called conjugate directions which helps to speed convergence.

Consider the Gaussian probability density function
P(d,m) = constant exp — —;—[Ad* Cq'Ad + Am” C,;lAm] , (1a)

where Ad =d - dy =d(m) - dyp, Am =m —mg, d is the data vector, d is the data
observations, m is the model vector, mq is the a priori model, and Cy4 and C,, are the
covariance matrices for data and model spaces respectively. (Note that * indicates conju-
gate transpose, normally the data consists of real values so © = T unless the inver-
sion is carried out in Fourier space (or some other complex space) ). Clearly, the max-

imum probability solution occurs when the least squares functional
S(d,m) = Ad"Ci'Ad + Am*"C'Am |, (1b)

is minimized so the least squares solution is equal to the maximum a posteriori solution

when the prior distributions are Gaussian.

In the following development, I have chosen to review the least squares theory in

terms of vectors and matrices though this development also applies to linear function
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spaces in the L2 norm. In the continuous case, vectors would become elements of
infinite-dimensional vector spaces and matrices linear operators. The vector/matrix
description applies to discretized spaces which is more easily translated into computer
code. One further point is that the final algorithm will be iterative and so all vectors and
matrices in the following section refer to the n-th iteration though subscript n is not

given explicitly to avoid cluttering in the development.

By taking the derivative of the square error functional S (d,m) with respect to the
model vector m we obtain the gradient vector g defined to be -1/2 of the steepest des-
cent vector

g8 =55 — D" C4'Ad+CL'Am

: (2)

where D = gd is the Frechet derivative matrix (later, D for the elastic wave equation
m

will be derived as an operator because the derivation is more straightforward). Note
that the factor 1/2 is introduced to simplify later expressions. One way to solve for a
minimum of the least squares functional is by substituting the linearization for d(m),

6d = d(m')-dm) — g—i(m' ~m) — Dém , (3)

into equation (2) and solving g = 0. This leads to the Newton algorithm,

!

m = m—Hg ) (4)

where
1
H — [D*Cd‘lDJrC,;}] , (5)

is the inverse Hessian matrix. This yields the maximum a posteriori solution in one
iteration for linear d(m) (see also Tarantola and Valette, 1982). The inverse Hessian
matrix modifies the gradient direction and chooses a magnitude of the model parameter
update such that the best fit solution is located in one iteration for linear functions
d(m).

The size of the seismic inverse problem is usually too large to handle using matrices
(see Mora, 1986, for an exception) but we will see that the gradient direction g can be
calculated by only two forward modeling runs in very general situations (i.e. elastic
waves, exotic survey specifications and complex geologic models). Then by approximating
the inverse Hessian H by H = nCy where 7 is called the steplength we arrive at an
preconditioned gradient type iterative least squares formula,

m' = m-Hg = m-75C,g . (6)
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If this algorithm were iteratively applied the solution should converge to the same solu-
tion as that of equation (4) so the gradient iterations effectively apply the true inverse
Hessian H. The minimum located by the least squares iterations may not be the global
minimum of the error functional in the case of nonlinear functions d(m) where many
local minima may exist (such as in the seismic problem). Whether or not the global
minima is located depends on the proximity of the starting point on the functional sur-
face to the global minimum. This problem of local minima is intrinsic to nonlinear
inverse problems and cannot be easily avoided. Actually, there are some different tech-
niques that attempt to handle local minima including: (1) doing several inversions from
different starting locations, (2) bounce methods which try to bounce out of local minima,
(3) adjustment of the a priori information, (4) adding new kinds of a priori constraints,
(5) careful choice of model parameters in order to minimize the degree of nonlinearity of
the function d(m) in the region of interest. Of these, the most efficient and meaningful
are (4) and (5). I do not include Monte Carlo methods in this list because for the situa-
tion under study, where the forward simulation is currently very CPU intensive, the

Monte Carlo methods are impractical.

Often, by using some a priori knowledge or constraint, it is possible to modify the
gradient direction g in some sensible way thus greatly speeding convergence (this may
also help avoid local minima and resolve the null space problem). Another way to modify
the gradient would be to derive an operator corresponding to the true inverse Hessian H
to perform a spatial deconvolution boosting more poorly resolved low frequencies as well
and unscrambling between the different model parameters. However, this would not be
easy because it would be a model-dependent operator that is spatially variable. In gen-
eral, a modification to the gradient is termed preconditioning and it need not be a linear

operation such as in equation (6) (see for example Harlan, 1984). Let the new precondi-

tioned gradient be denoted

p=P(g) . (7)

In order to perform the inversion by iteratively updating the model in the direction p we

must determine the steplength 5. Denote the updated model

m =m-p . (8)

Assuming linearity of d(m) in the vicinity of the current model m, the new data after

the model perturbation is
d =dm') = d-9p . (9)

Now, solve for the  which minimizes the new error functional S’ corresponding to the
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perturbed model.

min l min ! *ov =10 31 1 o -1 !
g S =y @ 4 O —dg) + (' -mg)” O mg) | . (10)

Solving for the derivative of S’ with respect to 5 yields

35! . “o-
S = [p*D C4'(Ad-Dp) + p" Cr(Am-yp) . (11)

Fnally, by setting this derivative to zero we obtain the solution for n

p'g
p'D*Cq'Dp+p” Clp

(12)

This value for # may not be very good for highly nonlinear functions d(m) so it may be

necessary to do a line search using the above value as a starting point.

Preconditioned conjugate gradient algorithm.

The use of conjugate directions helps to speed convergence by choosing a direction
that is a linear combination of the past and current steepest decent directions (Luen-
berger, 1973). Actually, this is not very important if the preconditioning operator is well
chosen but is worthwhile because it can be included at no extra cost to the algorithm (it
can be considered as an additional preconditioning). One choice for the conjugate direc-

tion ¢, 1s the Polak-Ribiere method

Po(8n —8n_1)
_—

¢, = P, + *
Pr_-18n1

n-1
This choice is preferred over the Fletcher-Reeves method because it tends to revert to

the simple gradient algorithm in situations where the function is very nonlinear and so is
more reliable (Powell, 1981).

Thus, the final algorithm for nonlinear least squares by the preconditioned conju-

gate gradient method (c.g. algorithm) is

Jor n =1 to o
d, = d(m,) data calculation
Ad, =d,-dy , Am, =m,-my compute residuals
S(d,m) = Ad" Ci'Ad+Am, C,;'Am, square error functional

exit of converged
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g, = Dn*Cd_lAd+Cn’11Amn gradient
P, =P(g,) = C,g, preconditioning
*
Pn [gn —gn—l)
€, = Pnt * Cp-1 , €1 = Pg conjugate direction
P 8n
c'g
n n
N, = calculate steplength
" ¢D.Ci'D, ¢, +¢, Cple, !
m, ; =m,-7,c, update model
end (13)

The reason n starts at 1 is because I used subscripts 0 to indicate the a priori model my
and field data d,,.

Computational aspects of the conjugate gradient algorithm

It will become clear in the next section that the operation of D, on a vector can be
achieved by a forward simulation (wave propagation) so the c.g. equations may be cal-
culated with three forward simulations, one to compute the synthetic data
d, =d(m, ), one to make the gradient as described in the next section (i.e. to compute
the D,"C4'Ad, term of g, ), and one to compute the steplength n (i.e. the D, ¢, term).
All other computations are simple dot products. If a line search is required, then several
more forward simulations may be necessary in order to optimize the steplength 7. In the
examples in this paper, I carried out such a line search for the optimal 7 which tended to
be within a factor of two of that predicted by equation (12). Because the predicted and
optimal values of 5 were so close, only two additional forward simulations were required
to do the line search. For a particular problem it may be found that the optimal 7 is

always approximately the same so maybe a line search is not always necessary.

There 1s a complication in the computation of 5. Because the elastic wave equation
is nonlinear and we never explicitly obtain the Frechet derivatives D, , we cannot com-
pute D, ¢, directly. Instead, it must be computed using the forward problem d(m) with

the following formula
Dn e, = Dn (mn +€cn )_Dn m, = d(mn +Ee, )_d(mn ) ’ (14)

where £ is chosen such that the model perturbation €c, is sufficiently small relative to
the model parameters m, (say 19) that the function d(m) is about linear. Therefore,

in practice, the formula for # is given by
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*
€8
Ny = 1 i ) (15)
& [/ DCID, g e 0y,

where D, €c,, is computed using equation (14).

A further complication is the covariance matrices. If these are assumed to be arbi-
trary they would require excessive computer storage and CPU time so in practice diago-
nal matrices are taken. Though diagonal, the covariance matrices need not be constant
but may vary along the diagonal which assumes independent but non-constant noise and
independent model parameters. In order that this assumption be reasonable, it may be
necessary to choose carefully the model parameters (and perhaps data parameters). A
viable alternative to the choice of diagonal covariance matrices is when C4! and C.! are

constant in the diagonal direction and so represent simple filtering operations.
GRADIENT CALCULATION

Introduction and overview

If we assume the earth is perfectly elastic, then the seismic forward problem d(m)

may be computed by solving the elastic wave equation (E.W.E.) (see Aki and Richards,
1980),

pu;=0; Ciy Oyup = f; (162)

Cijudiuygn; =1T; (16b)

u, = 0 , <0, (16¢)

uy = 0 , t<0, (16d)

where u; = wu;(xg,x,t)is the ¢-th component of displacement resulting from a shot

(ie. body force f; and/or traction T;) located at x5 . If we have receivers located at Xp

then the data, d(m), is given by
d(m) = U (XS Xp ,t) . (17)

In order to perform inversion using the c.g. algorithm equations (13) and (15), we
require the gradient g defined by equation (2) corresponding to model parameters m.
For the elastic wave equation, it is clear that the most obvious choices of model parame-
ters m are the Hooke tensor Cjjy, the density p, the body force f; and the traction T;

(for an isotropic medium the Hooke tensor can be described by the two Lame parame-

ters, A and p). However, there are other choices of model parameters which are more

SEP-48



Mora 177 Elastic inversion

physically meaningful and (as it turns out) better resolved (see Tarantola et al. 1985). In
particular, we could choose the P- and S-wave velocities and density or the P- and S-
wave impedances and density as model parameters. The gradient in terms of the
different model parameter choices are related and so the development will proceed by
deriving the gradient in terms of the simplest choice (\, u and p). Subsequently, the
expressions for the gradients in terms of the other model parameter choices will be

derived and cast in terms of the gradient for X\, u and p.

The derivation is based on finding an expression equivalent to the linearized for-

ward problem

6d = Dém . (18a)

or in continuous form

9D) sm(M) (18b)

where M indicates the model space. This expression indicates how to calculate a small
perturbation in the wavefield éd resulting from a small perturbation in the model
parameters ém by integrating over the model space, i.e. it is the linearized Green func-

tion representation of the forward problem or Born approximation. Once we have a

representation equivalent to equation (18b) we can identify the Frechet kernel D = g—d
m

and hence we can compute the adjoint operation
ém = D'46d | (19a)

or in continuous form
. ad(D
ém = |dD _0d(D). éd(D) . 19b)
(M) { [ om(M) ] (D) (

Note that the hat is used to make it clear that ém and érh are not the same (in fact érn
does not even have the same units as ém; it has units of (units (D)]Q/um'ts (M) rather

than simply units (M)).

Once expression (19b) has been derived we simply replace 6d by Cq'Ad and add
this result to C,!Am to obtain the desired gradient,

g = D'Cjlad + C.lAm .
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Adjoint of the E.W.E. parametrized by Lamés parameters and density

This derivation of the adjoint of the elastic wave equation (E.W.E.) follows Taran-

tola 1984. For the seismic problem, the linearized forward problem equivalent to equa-
tion (18b) is of form

aui (xS XpR rt )

bu; (x5 ,xp,t) = de(x)

[ Gl 00 (20)

where wu; (xg Xp,t) represents the seismogram located at receiver location Xp which

records the ¢-th component of displacement of an elastic wavefield due to a shot at x4
T
and m(x) = [C’ijk, (x),0(x), f; (x),T; (x)] at location x in the earth. Therefore, the

adjoint problem corresponding to equation (19b) is

binx) — ¥ [ i 2 E;‘Ifl(zf ) s (s ), (21)
S R

Le. the integral over the data space of the data residuals multiplied by the Frechet ker-
nel. From the above two expressions, it is clear that in order to obtain the adjoint
operation (21), all that is required is the integral expression (20) for the forward problem
which gives the perturbation in displacement §u; corresponding to some perturbations in
the model parameters ém. This expression would define the Frechet kernel so the
adjoint operation (21) could then be written by identifying terms in equations (20) and
(21). The linearized solution of the elastic wave equation in terms of Green’s functions

(the Born approximation) supplies the appropriate integral.

To avoid cluttering the equations with the shot location Xg, the following develop-
ment refers to a single shot. Therefore, the required adjoint operation can be obtained

from the result of this development by simply including the sum over shots. Now con-

sider the elastic wave equation

pt;=0; Cijpy Oy = f; (22a)
Cijudruyyn; =T; | (22b)
w = 0 , <0, (22¢)
w;, = 0 , t <0, (22d)

In order to find the integral corresponding to (20), we make the following substitutions

and subsequently solve using the Green’s functions.
u; — o + bu; (23a)

p— p+bp (23b)
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Cijr — Cijw +6Cin (23c)
fi = [i+6f; (23d)

and
T, — T,+6T; . (23¢)

These substitutions yield a new elastic wave equation describing the displacement per-

turbation éu; as a function of new force and traction terms Af; and AT;:

pbu; — 0; Cijudi oy, =Af; (24a)
Cijudiduyyn; = AT; (24b)
bu; =0 , & < 0, (24c)
bu; =0 , t < O, (24d)

where the new force and traction terms are
Afy = 6f; - bpu; + 0;6C;j 8, u, +0;(8p,6C8,6f; ,6T;)* | (25a)
and
AT; = 6T; —8C;u 0 uen; + O;(8p,6C; 0,61 ,6T;)% . (25b)

The new wave equation given in equation (24) has the same form as the elastic wave
equation and hence its solution can be obtained in terms of the Green’s functions of the
elastic wave equation. The solution in terms of the elastic Green’s functions (Aki and
Richards, 1980) is

Su; (xp ,t) = de(x)G,-j(xR,t;x,O)*Af]-(x,t)
1%
—|—de(x)Gij(xR,t;x,O)*ATj(x,t) . (26)
S

This equation has the form of the desired expression for the forward problem, equation
(20), and so it defines the Frechet kernel du;(xg,xp,t)/dm(x) from which we may

obtain the adjoint expression, equation (21). A simplified adjoint expression can be

obtained with some algebra.

Substituting the force and traction terms given in equations (25) into equation (26)
and neglecting the O? terms (i.e. assume small perturbations in order to obtain the
Frechet derivatives) and dropping the arguments of the various functions to avoid

cluttering, and using notation u,, ; = 9, u,, yields

bu; = [dVGy; *[6fj~6p7:£j +05 6C,4m ) ]+deG,-]- *[6T]- —5C, ki Uy M ] (27)
14 S
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This equation may be greatly simplified by using the following three results

() F()%0)=7Ff(t )*¢(t) , a property of convolution,
(i) de O F = de ng F , the divergence theorem, and
Vv M

(i) 8, [G “(Cum 1, ) ] = Giy (04 8Cuim w1 )+ (: G )*(#Csm 11 ) .

by the chain rule.

Applying these results to equation (27) yields the formula

bu; = fvdVG,.j*(Sfj +£dsa,.j*51‘j

- idvc':ij *i; 8p — Ldv[ak Gy ] *[5Cjk,m U ] . (28)

Finally, assuming isotropy, we have

6Cium = Nt O + S8 64y +671 B ) (29)
and therefore we get
Su; = [dVG;; *6f; + [dSGy; *6T;
12 S
- [AVGy; *ij6p - [dVG; ; *uy 8% = [dVGy; 4 * (uy 4 +uy [ )op (30)
|4 |4 |4

This equation has exactly the same form as equation (20) so clearly it defines the Frechet

kernel gi for model parameters p, \, pu, f; and T;. Use of this equation to solve the
m

forward problem is referred to as the Born approximation. In this paper the Born
approximation is not used to solve the forward problem but rather the full elastic wave
equation (22). By integrating the Frechet kernel defined by equation (30) over the data
space (see equation (21) ) we obtain the adjoint operation
bt = [6p, 65, 8, 8f ; , 6T;]T where

R
SN = [N Gij j Ftg m U (31h)
R
oip = _fthGij,lc*(uj,k+uk,j)6ui
R
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1 1
= —Jdt}—= | Gij 1 +Gi ; | = u; s +up ; |6u; | 31
f %}\/5( 7.k :Ic,]] \/E[u]’k ulc,]) U; ( C)
8f; = [dtY Gy *6u; (31d)
R
5T, = [di¥Gy; *éu; . (31e)
R

These expressions may be simplified by using the commutativity of convolution (i.e.

J*¢ = g*f ) and the following property in order to shift the location of the convolu-
tion

Jdt 1)) (t) = fdt [ (t)g(6)*h(t) . (32)
The resulting integrals corresponding to equations (22) have the form

ém(x) = fdtz(ﬂuj (x,t )] (QG’,-J- (xp ,tx,0)* 6u; (xp ,—t)
R
= fdt[ﬂuj (x,t )) [Q%GU (x,0;xp ,—t ) * bu; (xp ,—t )]

= fdt(ﬂuj (x,t)] ((wj (x,t)] . (33a)

Following Tarantola 1984, I have made use of the properties of the elastic Green’s func-
tions, namely reciprocity (i.e. interchangeability of x with xp and time translational

invariance (i.e. G;; (xp ,f;x,0) = G;j (x,0;xg —t ) and introduce the new wavefield

ij (X,t ) - EGU (XJO;XR —t )* 6uz (XR 1t ) ’ (33b)
R

to be interpreted later. Note that I also introduced an operator £ which is dependent on

the type of model parameter at each location x. Specifically, from equations (32) we have

1
Qp:(?, y Q)\ :8]- s Qﬂ:_\/_é (5]k8z+6ﬂak] , (34&)
and
&t —t!

J

This operator is described in more detail in the section that compares inversion to migra-

tion.
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Interpreting the adjoint operation

Consider equation (33a) which is the adjoint to the elastic wave equation. There
are only two unknowns, the wavefields u; and ¥;. The wavefield u; can be computed
by forward modeling (i.e. doing a shot simulation). Now consider the definition of Y, of
equation (33b). The Green’s function G;; gives the displacement at location x and time
0 due to an impulsive force at xp and time —¢. Hence, the wavefield 1 is generated
applying 6u; (xp ,—t ) as the forcing term in the wave equation and therefore can be cal-
culated by another forward modeling run. Since &u; is the time reversed residuals
(difference between two recorded wavefields), we call ¢; the back propagated residual

wavefield. From this interpretation it is clear that the adjoint can be calculated with

the following steps:

(i) Simulate elastic wave propagation to solve for u.

(ii) Compute the data residuals fu = u—u,.

(iii) Back propagate the data residuals (i.e. compute the wavefield resulting from a forc-
ing function equal to éu). Simultaneously apply @ and compute the time integral which
represents the computation of the correlation between € operated on the forward pro-

pagated field and {2 operated on the back propagated residual wavefield.

The gradient direction

The c.g. inversion algorithm (13) requires the gradient g = D* Cj'Ad+C'Am
but equation (33) only represents the adjoint operation, i.e. D*6d. Assuming a diagonal
data covariance function (uncorrelated noise) for simplicity of computation and using

equation (33) to define the adjoint operator D”, we obtain for the gradient
g(x) = Y [dt cd—l(t)[nuj (x,t )] (mbj (x,t )]+c,;,1Am , (35a)
S

where I have now reintroduced the shot sum that was dropped in the development to

avoid cluttering and 1 is now defined by

1#7 (X,t ) = ECd_l(xR )Gz] (X,O;XR ,—t )* Au, (XR ,—t) , (35b)
R

so it is the back propagated residual wavefield created by taking the difference Aw;

between the observed data u; and the forward modeled wavefield u; and using this as a

forcing function in the wave equation. This assumes that the data covariances can be

represented as

Ci'(xp,t) = Cq'(xp)Cq'(t)
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Finally, rewriting the gradient (35) using the definition of the operator Q from
equation (25) we obtain for the components of the gradient now denoted 6p, 5§\, St 6fj

and&f"j,(i.e.gT = 1:6?),6§,6ﬁ,5fj ,5f1j])

6p = - [dt Ci'i; 95 + €l (p-po) +
S

= &' +C,l(ppo)+ - (36a)
SN = - [dt Cilup m s ; + Cl(A-Ng) +
S
= N +CION)+ -, (36h)
5 a1 1 _
= dt il 4y —_ ) + C Y-
bp X.S')f d \/‘2‘[uk,1 uj,k]\/i("pk,] ¢],k] uu(/" UO)+
= &' + Culu—rpo)+ - (36¢)
= %05% +Crly (F-fj0) +
= &f;' +Cj;(Ji~fi0)+ -, (36d)
8T, chl% +CTT(T ~Tjo) +
= 6T]I +Cf}lT](T]_Tjo)+ cot . (366)

These equations define 6X\' | 6y’ and 8p' which will be used later in the expressions for
the gradient in terms of the other choices of model parameters. The dots at the end of
each equation represent cross-covariance terms between the different types of model
parameters. These cross covariances are usually considered to be negligible for the sake
of simplicity and due to lack of knowledge. Furthermore, constant diagonal covariance
functions are normally assumed, i.e. C,, = apzpl etc. (for an exception see Mora, 1986).
This means that the physical parameters are assumed to be spatially uncorrelated. This
1s generally false so biases can be expected in the solutions. Perhaps it would be best to
at least include diagonal cross covariance functions C,, = ap%\I etc. if reasonable values

can be estimated.

Although the force and traction terms of the gradient have been derived as if they
are spatially variable, in seismic exploration we can assume that the source locations are
known so the force terms need to be solved only at the true source locations. (i.e. the

force and traction covariance functions ij and CT] are Dirac functions of form

6(x—xg ). Actually, it would be best to know the source functions rather than invert for

them because for reflection data, the source time history cannot be well resolved from
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the near surface geology and reverberation effects. However, if the direct wave is known
such as is the case for VSP data, the source is much better determined and can be
inverted simultaneously with the geology, see Harlan 1984. Normally, with only reflection
data it is best to use a preprocessing step to find the source or more generally, to use

relaxation. That is, to invert for the source only followed by inversion for the geology

only and so on.

The time dependent data covariance function can be approximated as
-1
o) = Lo, (37)

which allows for data errors which decay with time (i.e. errors are assumed to be unac-
counted seismic waves which diverge with time and hence diminish in amplitude). Typi-

cally, for a 2D problem a value of p >.5 is reasonable while in a 3D problem p =1 would
be appropriate.

The receiver dependent inverse covariance function Cql(xp ) is usually chosen to be

unity except at the edges of the shot gather where a taper can be applied to decrease

artifacts resulting from a sudden edge in the recorded data.

Different model parameters

A theoretical study by Tarantola et al. 1985 indicates that the choice of model
parameters is especially important in the elastic case where there are three independent
parameters at each earth location. The reason is that for some choices, three elastic
parameters can be easily resolved from one another while for other choices they cannot.
The results of Tarantola’s study indicated that for seismic surveys where the source is
dominantly P-waves, the choice of the Lamé parameters was much worse than either the
choice of the velocities or impedances. Furthermore, the results indicated that the den-
sity was not very well resolved (especially the from P-wave velocity) and that in practice
it is probable that only two parameters such as P- and S-velocity or P- and S-impedance
will be resolvable. Therefore, I will derive expressions for the gradient in terms the velo-

cities and impedances.

The equations for the gradient in terms of the P-velocity «, S-velocity 8 and den-
sity p and the P-impedance Zp, S-impedance Zg and density p can be easily derived in

terms of the gradient for the Lamé parameters and density by changing variables. For

example, consider the gradient

gn = 290;'Ad + Clam |
Jdm
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where the subscript m on g indicates that the gradient is in terms of model parameters
m. The gradient in terms of different model parameters m’ is

od _ _ od 9 - _
gm' = ch lAd + Cm} Am' Eﬁ-a—nrl!;l—cd lAd + Cm} Am’

. (38)
Therefore, all that is needed to evaluate the gradient in terms of different model parame-
ters is the Jacobian om

1,nl

For example, the gradient for the P-wave velocity is

a

56 — %&' +§—Z§u’ +§—Zapf + Cla-ag) +
where 6\ | &' and &p'

: (39)
are defined by equations (36). The required elements of the
Jacobian o etc. can be obtained from the relationships for o and 3

@

or solving for A and u,

(40)
o= pa?-208° , p = pp* .
Using these equations we obtain the gradient in terms of the P- and S-wave
and density as

(41)

velocities
8& = 2pabN + Cila—ap) + , (42a)

688 = —4pPN + 20850 + CiMBH) + - | (42b)
Spo = (20N + B + 85 + CMppo) +

Zp

= po =

. (42¢)
The equations relating the impedances Zp and Zg to the Lame parameters are

Vo(r+2p)

Zs
or solving for \ and pu

- pﬂ - \/ﬁ)
A

= 'I—(ZP2‘ 2Z52] o= —zd
p p
so the components of the gradient with respect to the impedances are

62}3 —

20’6>\I + CZ_PIZP(ZP “Zpo) +

, (45a)
6Zs = 4B\ + 268 + Czly (Zs—Zs) + , (45b)
§py; = (206N - B’ + 8p' + CMro—pg) + (45¢)
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Note that aside from a factor of p, the gradient in terms of the velocities (equations
(42)) and the gradient in terms of the impedances (equations (45)) are identical except
that the density gradient terms have some sign differences. The main effect of these sign
differences is to alter the magnitude of the density gradient depending on which choice

of model parameters is used.

Comparison of inversion to migration

The gradient to be used in the conjugate gradient inversion algorithm has the form

sth = Y [dt Cq'Qu; Qy; + ClAm (46)
S

If @ and Cq! were set to unity and C.! was set to zero then the gradient of equa-
tion (46) does an elastic prestack shot-profile migration by correlation of the upgoing
reflected waves 1; with the downgoing direct wave u; . Where the correlation is great,
there is a reflector or in other words, the reflected waves intersect the direct wave at the
reflecting interface. This is also similar to Claerbout’s U /D concept (Claerbout, 1976)
that states that the reflectivity is the ratio of the amplitude of upgoing (reflected) waves
U to the downgoing (direct) wave D. Note that sometimes the correlation of U and D
are used as a stable approximation to the U /D method. If in addition, the two
wavefields u; and ¥; represented pressure wavefields, then we would have a conven-
tional acoustic prestack shot-profile migration. Hence, conventional migration is
equivalent to the computation of the least squares gradient direction of inversion except

that it does not include covariances or the operator Q2 (see also Lailly, 1984).

It is clear that € is a very important operator. It unravels the wavefield informa-
tion into the desired model parameters using the amplitude information (i.e. the overall
amplitude of the reflected waves as well as the amplitude-incidence angle information).
Another main difference between the inversion algorithm described here and migration is
that it is iterative. The iterations tend to allow for the fact that the modeling function
d(m) is nonlinear as well as iteratively applying the true inverse Hessian of equation (5)
which would correct all the relative amplitudes of velocities and densities to their most
likely values (i.e. the best fit values). Note that the iterations also help to regain some of
the more poorly resolved low frequencies. Without iterations, the inversion algorithm,
like migration, would have little hope of obtaining any of the lower frequencies except
perhaps if a very clever preconditioning were constructed. The reason some of the low
frequencies can be regained is that the inversion tries to match the entire shot profile
which consists of approximately hyperbolic events that can only be matched if the low

frequency velocity model is correct. The iterations are necessary because a gradient
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algorithm is used and such algorithms obtain the best resolved components of the model
(high frequencies) first and the poorest resolved components (low frequencies) last. It
will be a challenge of future research to allow for the resolution of low and high frequen-

cies simultaneously.

Speedup by data contraction

One reason that the inversion method is so costly is that it requires several elastic
wave propagations per shot for each iteration and the number of shots is typically large
for seismic surveys. However, the number of shots can in theory be reduced by about an
order of magnitude thereby bringing the computer time required by this method to a
more reasonable figure. This can be done by changing the concept of the experiment so
that instead of doing say 100 shot simulations we do 10 super-shot simulations. In this
case, a super shot profile would be obtained by firing 10 shots (every 10-th shot) simul-
taneously. Almost the same information is contained in the 10 super-shots but in a
slightly scrambled form so the inversion should give almost the same results but with
some additional noise. In practice, to avoid having to reshoot seismic lines as super shots,
we could simply stack every 10-th shot profile. Some analysis is yet required to evaluate

whether super shot inversions would be significantly corrupted by artifacts and noise.

Low frequencies

The method of inversion presented here is very powerful and can be used for almost
any form of seismic data including reflection data (conventional surface seismics) or
transmission data (well to well or VSP data). When used for transmission problems it
can resolve the low frequency components of the model and does a kind of wave equa-
tion tomography (see Gauthier and Tarantola, 1985 for an acoustic transmission exam-
ple). However, when used to invert reflection seismic data the low frequency model is not
well resolved by the algorithm. Two possible solutions to this problem are
(i) Use of a clever preconditioning operator (i.e. approximate inverse Hessian) to
enhance low frequency velocity perturbations. This could either be a boosting of the low
frequency components which would be the small eigenvalues of the problem or an impo-
sition of non-Gaussian statistics such as blockiness (see Harlan, 1984).

(ii) Derive a secondary inverse problem that attempts to resolve the low frequencies. In
this case, one iteration of the “total” inversion algorithm would consist of one iteration
for the low frequency part followed by one iteration for the high frequency part. This
method is not unreasonable because the low and high frequencies are fairly well decou-

pled. That is, the high frequency model perturbations cause amplitudes but not shapes
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of the hyperbolas to change while the low frequency model perturbations cause the

shapes but not amplitudes of hyperbolas to change.

As presented in the paper, the low frequency a priori model mg 1s assumed to be
known from a prior “inversion” step (such as NMO) and thereafter, it is never changed.
However, if we replace NMO with least squares, i.e. finding a low frequency model that
produces hyperbolas that best match the data, and include this as an extra step at every
iteration, then we have a “total” inversion algorithm. One way to do the extra step is
by observing that the size of the high frequency model perturbations found in the
current algorithm is maximized when the best low frequency model is used (because the
kinematics is correct). This is analogous to doing NMO and stacking at different velocity
functions. The best quality stack is achieved when the best low frequency velocity model
is used. All that would be required for the extra inversion step is the operator L that
relates the low frequency model perturbations Amy,, to the high frequency perturba-

tions Am = Amy,;, , i.e.
AInhigh - LAmlow (47)

Then, as for the high frequency derivation, this can be used to define the adjoint opera-
tion and hence the gradient direction for a least squares inversion. Note that we wish to

maximize the perturbations Amy,;,; so we would minimize a functional of form
. * 1 * -1
S(myign My ) = — Amyy, Cumyp AMpigy + Amy,,, Cpy)  Amy,,, (48)

in the extra inversion step (c.f. equation (1b) ). This method seems preferable to use of
(1) because it is uses the low frequency information in the seismic data (hyperbolic
events) to restrict the low frequency model rather than only relying on some additional a
priorl statistics. Each iteration of the low frequency inversion step is really an elastic
wave equation based NMO. Perhaps, the best method of obtaining the low frequencies

would be a combination of (i) and (ii).
RESULTS

Introduction

The following are some examples to demonstrate the algorithm applied to synthetic
reflection seismic data. The synthetic data was calculated with elastic finite differences
using an algorithm similar to that of Kosloff et al., 1984 (see also Cerjan et al. 1985).
The inversion was carried out with the conjugate gradient algorithm (equations (13) and

(15)) and using the gradient parametrized in P- and S-wave velocities and density
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denoted o, B and p. The gradient was calculated with equations (42a) through (42c)
using definitions from equation (35b) and equations (36a) through (36¢). To concentrate
on the resolvability of a, 8 and p, the source was assumed to be known and so was not
varied with equations (36d) and (36e) but was fixed at its true value throughout the
inversions. The method of elastic finite differences was used to compute the forward
modeled wavefield u; and the back propagated residual wavefield ¥;. Equation (37)
was used to define the data covariance matrix (this is equivalent to saying that a time
varying gain of t? was applied) where the value of p was .5 or .75 depending on the
example. The data variance was small so the inversion was not heavily damped and
hence the solution was not required to stay close to the a priori model mg (i.e. little heed
was paid in the c.g. algorithm (equation (13)) to Am, C'Am,, C lAm or ¢,Clc, ).
A preconditioning of C,, was applied in algorithm (13) where constant diagonal model
covariance matrices were used, C,, = 2,1, Cps = B2.1 and C,, = p2.1 and cross-
covariances between different model parameters were assumed to be zero. A band lim-
ited source wavelet was used (either 2-nd or 4-th derivative of a Gaussian curve depend-

ing on the example).

Spatial resolution test, 4-diffractor model

In order to test the spatial resolution of the algorithm, an inversion was carried out
on data generated from model consisting of four shallow diffractors (Figures 1a, 1c, and
le). The leftmost diffractor is perturbation in P-velocity only, the second from the left is
a perturbation in S-velocity only, the third is in density and the last is a perturbation in
all three. A vertical force and a 4-th derivative Gaussian far field wavelet with funda-
mental frequency of about 25 hertz was used to generate the data, a split spread two-
component shot profile shown in Figure 2. An inversion was performed using the correct
constant background model as the initial guess. Figures 1b, 1d and 1f show the result of
the inversion for P-velocity, S-velocity and density after 5 iterations plotted at the same
scale as the model. Clearly, the diffractors have been very well located. Furthermore,
the inversion result for each of the 3 parameters have two main anomalies of the correct
sign at the true locations of the diffractors. The main limitation is poor resolution
between P-wave velocity and density. This agrees with the study of model parameter
choice (Tarantola et al. 1985) which indicated that probably only 2 parameters can be
resolved, say P- and S-wave velocity or P- and S-impedance. However, considering that
only one shot was used in the inversion it has done a remarkable job of locating the

diffiractors and giving an indication of the relative magnitudes of the three physical
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properties. With more shots, it is expected that both the spatial resolution and the reso-
lution between the different properties would slightly improve. The residual (difference
between the synthetic data of Figure 2 and the synthetic data computed with the elastic
properties obtained after 5 iterations) is shown in Figure 3 at the same scale as the data.
After only 5 iterations most of the energy in the synthetic data has been accounted for
by the inversion algorithm. Note that the absolute magnitudes of the inversion result
shown in Figure 1 are not large enough due to problems associated with band limitations
which leads to a null space. That is, for band limited data, more than one physical

model have almost identical seismic responses.

Resolution versus depth and the effect of iterations

A similar example to the spatial resolution test was performed but using three sets
of diffractor perturbations at three different depths. The point of this example is to
study whether deeper diffractors are more poorly resolved and whether resolution
between the different parameters decreases significantly at greater depths where there
are smaller incidence angles. A different source wavelet was used, a second derivative
Gaussian with a fundamental of about 20 hertz. The synthetic data (with the direct
waves removed) is shown in Figure 4, the residual after 5 iterations is in Figure 5. The
true model and inversion result after 1 and 5 iterations is shown in Figure 6 at a relative
scale (the previous example has already illustrated that the absolute magnitudes of the
inversion result cannot be well resolved and therefore a relative scale is used to display
all the following results). From the results of Figure 6 it is clear that spatial resolution
is only slightly worst at greater depths while resolution between the different parameters
1s about the same at all depths. This is because the incidence angle for the deepest
diffractors is still quite large (around 45 degrees). The spatial resolution is worse than in
the first example probably because of the different source wavelet which contains more
low frequency content. The main result of iterations is to decrease the size of artifacts
relative to the desired point perturbations. Actually, it is the size of the point perturba-
tions that increases while the artifacts generated from the first iteration remain about
constant. Another main effect of the iterations is to correct the relative sizes of the S-
wave velocity solution. This illustrates one advantage of iterative elastic inversion over

elastic migration which would give a result similar to the first iteration of the inversion.
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Inversion in the presence of Gaussian noise

The data of the previous example was contaminated with independent Gaussian
noise (Figure 7). An inversion was carried out of this noisy data. The residual after 5
iterations is shown in Figure 8 and the inversion result in Figure 9. There is some noise
in the solution the result is very similar to the noise free solution except in areas around

the edge of the model which are more poorly resolved and hence more susceptible to

noise contamination.

Single component data inversion

The examples so far have been inversions of two component data. To illustrate the
importance of two component data which contains significant shear wave energy in the
form of P-S and S-S diffractions, an inversion was carried out on the synthetic vertical
component data of Figure 2a only. The residual after 5 iterations is shown in Figure 10
and the true model and the inversion results after 1 and 5 iterations are plotted in Fig-
ure 11. Compared with the inversion results of the two-component data shown in Fig. 6,
the resolution between P- and S-wave velocity is poorer especially in the early iterations.
However, after 5 iterations there is still fair resolution between these parameters though
1t is certainly much worse than when two component data was used. Probably, in a more
realistic example with very slow near surface velocities and hence even less P-S and S-S

energy than in this example, the resolution between P- and S-wave velocity would be

€ven worse.

Both vertical and horizontal shots and two component receivers

Is it worth doing shear wave surveys when there is plenty of shear wave energy
contained in normal surveys using large offsets and two component geophones? With
conventional methods of processing, expensive shear surveys are the only way to get
good shear velocity images because the processing assumes only one wave type (i.e. con-
ventional shear processing mainly uses the old P-wave processing techniques). However,
the elastic inversion algorithm uses the elastic wave equation and can correctly handle
the presence of both P-waves and S-waves to produce two separate images. In this case
is the resolution significantly improved by including shear sources (i.e. horizontal forces)

as well as vertical sources?

Figure 12 shows data generated from a horizontal source which was used simultane-
ously with the vertical source data of Figure 4 to do an inversion. The residual after 5
iterations is shown in Figure 13 and the inversion result is given in Figure 14. Clearly,

the result after 5 iterations is almost identical to the result when only vertical shots were
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used. The only significant difference is that when the horizontal source was included, the
shear velocities had the correct relative magnitudes from the start (i.e. iteration 1). This
is because there is now significant S-S reflections even at zero incidence angle (in the hor-
izontal source shot profile) and this helps resolve the S-velocity. Previously, the S-wave
velocity was better resolved where there were more P-S and S-S conversions, namely in
the shallow part of the model where the incidence angle was higher. Therefore, it seems
that by using the iterative inversion approach, we can obtain good S-wave velocity
images even when there is no horizontal (shear) source data provided there is two com-
ponent data recorded to fairly long offsets. Perhaps this means that by basing algo-
rithms on the elastic wave equation we can do away with expensive horizontal source
surveys. Of course, the inversion approach is much more expensive than conventional
processing and in any case the final test will be on field data. One further point is that
even with two component shots and receivers the density is still not perfectly resolved
from the from the P- and S-wave velocities. Compared to the vertical source result, P-
wave velocity and density are better resolved from one another but S-wave velocity and
density are more poorly resolved from one another. Therefore, it appears that only two
parameters (say P- and S-wave velocities) can be resolved from seismic data even under
almost 1deal circumstances. Furthermore, P-wave and S-wave velocities are better
resolved from one another whereas there is always fairly poor resolution between density
and at least one of the other two parameters. These results indicate that acoustic invert-
ers who do inversions for P-wave velocity and density are wasting their time when a

better resolved parameter (S-wave velocity) exists.

A plane layered example

The following example demonstrates that the algorithm can resolve some of the low
frequency model perturbations but that this takes many iterations. Therefore, the algo-
rithm is very inefficient as a method of obtaining the low frequencies and hence some
improvements are required (see the section titled “Low frequencies’” for some possible
solutions to this problem). The slightly noise contaminated data shown in Figure 15 was
generated from modeling over some plane layers. The model used to generate this data
1s shown in Figure 17 in the solid line. A linear fit of this model was used as the starting
guess in the inversion. There is still significant energy (especially due to S-waves) in the
residuals after 15 iterations (Figure 16) illustrating slow convergence. The reason for the
slow convergence is that the low frequency model perturbations are fairly poorly resolved
and so take many iterations of a gradient algorithm to appear in the solution. The inver-

sion result at various iterations i1s shown in Figure 17 again illustrating the gradual
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creeping of low frequencies into the solution as iterations proceed. Clearly, the iterations
help and the inversion result is much better than the migration result (which would
essentially be the same as the first iteration). However, the low frequencies only very gra-
dually build up so the algorithm requires either a better low frequency starting model or
some improvements which help resolve the low frequencies. One technique to enhance
the low frequencies is by finding the main layer boundaries from the solution and using

these to obtain a blocky solution (i.e. a “blockiness” preconditioning).

Complicated synthetic data inversion, horst model

Data was generated for the very complicated geologic model (Figure 18) consisting
of a horst structure and reef complex amidst a multitude of larger layers each with ran-
dom fine layer structure within them. P-velocity varied by about 7.5% and S-velocity by
about 15%. This range of velocity variation was deliberately chosen to be fairly small so
the gradient inversion algorithm would converge rapidly in this test case and to avoid
problems of local minima in the least squares objective function. A vertical force was
applied and a fourth derivative Gaussian wavelet was used to generate the synthetic
shot gather shown in Figure 19. Note that high dip events on the vertical component
shot gather are S-S and P-S reflections and not finite difference boundary artifacts (the
boundaries are almost perfectly absorbing). An initial model consisting of a linear fit to
the true model was used and an inversion was performed. The residual after 3 iterations
shown in Figure 20 still has significant energy indicating the algorithm has not yet con-
verged to the best fit solution. The low frequencies could not be resolved in just 3 itera-
tions (results from the layered example indicate that further iterations help regain at
least some of the low frequencies) so only the well resolved high frequency component of
the inversion result is shown (Figure 21). To aid the comparison of these results, the
true model was filtered appropriately and zeroed in the regions near the boundaries
where few reflections could occur (Figure 22). Many features can be seen on the inver-
sion result which coincide with the main boundaries of the true model. Another obvious
feature is the lack of energy in the S-velocity result of Figure 21 directly below the shot.
This is because the S-velocity can only be reconstructed where significant S-S, P-S or S-
P reflections occur (i.e. not beneath the shot since it is a vertical force). Considering the
complexity of the data and model, the inversion had done a good job of imaging (invert-
ing for the higher frequency model variations). If many shots were used then the inver-
sion should be able to reconstruct complete P-velocity, S-velocity and density images
instead of a partial image in the region directly below the shot location where most

energy was reflected for this shot.
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DISCUSSION

A method of elastic inversion was derived using the most obvious choice of model
parameters given the elastic wave equation, that is the Lamé parameters. Equations
were also given in terms of two other choices of model parameters, velocities and
impedances. The choice of model parameters should be made, where possible, in order to
attempt to make the model parameters as independent as possible and hence better
resolved (see Tarantola et al., 1985, who study resolution of different physical parameter
choices or Harlan, 1984, who carries out inversion for the depth derivative of impedance
in 1D inversion thus avoiding problems of knowing a spatially variable mean). Also, the
data was parametrized by the displacement amplitude leading to the Born linearization
(i.e. the Frechet derivatives were derived from a Born equation). This has limitations and
perhaps better linearizations exist. For example, in transmission problems, the Rytoff
linearization which derives Frechet derivatives from phase rather than amplitude data is
better (i.e. has a larger linear region). Also, perhaps the model parameter space can be
more heavily restricted in early iterations in order to minimize those components of the
model which are clearly nonlinear. For instance, in the Born approximation the kinemat-
ics of the wavefield must be approximately correct or the linearization is bad. Therefore,
if all frequency components of the model were included in an inversion which started
relatively far from the solution, false scatterers would be introduced by the inversion in
its early iterations thereby making convergence difficult if not impossible (probably the
false scatterers would aggravate the local minima problem). However, if the inversion
proceeded by first inverting only for the lower spatial frequency components of the

model and progressively increasing the frequency range upward, then no such problem

would occur.

Because of the cost of the inversion algorithm, the big area for research and
improvements relates to the study of the preconditioning operator. Preconditioning
should do many things including source wavelet deconvolution and restriction of the
estimated model to lie in the part of the null space which intersects with the true model
statistics (which are usually non- Gaussian). It should greatly speed convergence if it is
well chosen. Note that preconditioning is often considered to be an approximation of the
inverse Hessian operator but it can actually do much more. This is because the inverse
Hessian is a least squares concept while the preconditioning operator can be chosen with
no regard for least squares but paying more heed to other factors such as the desired

model statistics.

The algorithm outlined is for 2D inversion. It would be impractical for 3D at the

present time since no one knows how to solve rapidly the 3D forward problem for
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relatively arbitrary distributions of physical properties. However, in principle it could be
extended to 2.5 D relatively easily by making some modifications in the computations to

allow for out of plane wave divergence.

CONCLUSIONS

Two-dimensional elastic inversion of multi-offset seismic data has been described
and with some speedups it should be feasible though costly on todays super computers.
Synthetic data tests indicate that the elastic inversion works on realistic sized problems
with excellent spatial resolution of the high frequency components of the elastic parame-
ters. In the case of reflection seismic data where there is no direct arrival, the low fre-
quency components are at best partially resolved though they are better resolved than in
a migration. The degree of resolution of the low frequencies depends mainly on the
number of iterations, the degree of noise contamination and the statistics of the earth
model. The resolution between P-velocity and S-velocity is quite good while the resolu-
tion between P-velocity and density is poor. The method has done at least as much as
an elastic multi-offset migration would be expected to do (no prestack elastic migration
algorithm currently exists so it is difficult to make any comparisons other than through
analysis of the equations). It provides understanding for a framework of elastic process-
ing and inversion that is badly needed with the increase in multi-component recordings
and wide-angle experiments. It is very powerful because it can in principle be used for
almost any situation including inversions of reflected wavefields (e.g. shot profile inver-
sion as in the examples) and inversions of transmitted wavefields such as in well-to-well
tomography. Limitations are that it is a very computer intensive process (being an order
of magnitude more costly than a prestack migration) and that like migration, it requires
fairly accurate knowledge of the very low frequency velocity model (so that the kinemat-
ics of events are approximately correct). Future work is required to test the algorithm
more thoroughly under different circumstances, study the effect of the choice of model
parameters on resolution, and to invent a better preconditioning operator to speed con-
vergence and regain the poorly resolved low frequencies and/or an additional low fre-

quency (model) inversion step.
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Figure 1: True 4 diffractor model and inversion result after 5 iterations plotted at the same scale.

(a) True P-wave velocity, (b) P-wave velocity result, (c) true S-wave velocity, (d) S-wave velocity

result, (e) true density, (f) density result.
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Figure 2: Vertical source synthetic shot gather generated from the 4 diffractor model shown in

Fig. 1. (a) Vertical component, and (b) horizontal component.
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Figure 3: Residual after 5 iterations for the 4 diffractor example. (a) Vertical component, and

(b) horizontal component.
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been removed). (a) Vertical component, (b) horizontal component.
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has been removed). (a) Vertical component, (b) horizontal component.
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Vertical component, (b) horizontal component.
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Figure 10: Vertical component residual after 5 iterations for the vertical source 12 diffractor

example. Only the vertical component data of Fig. 4a was used in the inversion.
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data for the 12 diffractor example. (a) True P-wave velocity model, (b) P-wave velocity after one
iteration, (c) P-wave velocity after five iterations, (d) true S-wave velocity model, (e) S-wave
velocity after one iteration, (f) S-wave velocity after five iterations, (g) true density model, (h)
density after one iteration, and (i) density after five iterations.

SEP-48



e
|

UUUUUUU
wwwwwwwwwwwwwwww



33— —————
eV ey
e —v———
e
] e ——————————————
_—— e —————
————— s
——— e e e e
e _"————s———————
_—— —_— e
_————_————
—————— E———— o Yo
——— e
_ — e ———————
——
—
—_———
_— e e ———
—_— e ——————————————
_—— = _—_— e ==
—_—— e e e —————
_—————
—_——— = = g
_—— e ——————=— e e
e
e e ———
e ———————

T _
HHHHHHHHH



Mora 219 Elastic tnversion

Location (km)

0
° T

(T
s
T st |
B
2 | g
(a) — T ]
o e S e
@ A s
- i J,%‘fé);
i
Location (km)
0 1 2
o
| m T
? ‘H” g ij
i .
<’ui ]:- f "’.”;*eu-f.
= T,
3 gt
(b) P e
: |
8
T
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Figure 19: Synthetic shot gather for the horst model shown in Fig. 18. (a) vertical component,

(b) horizontal component.
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Figure 20: Residual after 3 iterations for the horst model example. (a) vertical component, (b)

horizontal component.
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