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A program for vectorized finite-difference
migration

Stewart A. Levin

ABSTRACT
In SEP-38 and SEP-41 I described a method for finite-difference migration on a

parallel computer. Unfortunately, parallel computers do not abound yet. But pipelined
vector computers do. Here I show by example that my parallel ideas also vectorize. I

provide a Fortran program for 15 ° time-domain finite-difference migration that

1)  vectorizes every inner loop,

2 handles both seismic data and migration velocities in natural trace ordering,

)
3) is short, simple and clear, and
4)

easily converts to higher order finite-differences.

This program is the fastest and most sensible adaptation of 15 ° time-domain migration
to a large, vector computer I have ever seen and I predict that it will soon be used rou-

tinely within the geophysical industry.

INTRODUCTION

In a short note on reverse-time migration (Levin, 1984a) I noted that on the con-
ventional 15 ° migration grid reverse-time migration is most directly implemented by
filling in successive planes parallel to the diagonal, migrated image. In follow-up SEP
articles (Levin, 1984b,c) I showed that this reverse-time ordering is well suited to parallel

computation and discussed practical details and limitations.

In 1985 the Stanford Exploration Project purchased a Convex C-1 vector computer
(Claerbout, et al., 1985). A vector computer gains its speed through pipelining, a spe-
cialized form of parallelism. Because of this specialization, it is not necessary that a
good procedure on a parallel computer is also good on a vector computer. Fortunately
in finite-difference migration I find my parallel methods do work well as vector methods.
In the appendix I demonstrate this with a listing of a short program I wrote for 15 °
finite-difference migration.
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DISSECTING THE PROGRAM

The payoff of this exercise is shown in the comments inserted by the Convex For-
tran compiler: every single inner loop in the program vectorized. On the Convex this
(t +7)-outer program migrated a 256 trace, 1024 time point section in four and a quarter
minutes of CPU time. A well-coded conventional outer 15 ° migration took over 21
minutes to migrate the same section. This is a factor of five slower. The time lost was
spent solving tridiagonal equations recursively by the method used in subroutine “triply”
in the appendix. As shown in Levin, 1984c, there are less recursive alternatives to this
method but in practice they run even slower than the efficient, though scalar, recursive
method I've used.

A second distinction of this vectorized program is that it treats both the seismic
data and the seismic velocities in natural trace ordering. Conventional finite-difference
migration wants these grids transposed. Keeping them in trace order slows the conven-
tional migration down because of noncontiguous memory access. Thus I also avoid the
generally small overhead of transposing the grids. The drawback is that my program
has a much higher storage requirement, requiring about 9nt X nz locations compared to
about 9nz for conventional migration. This is not a problem on our Convex nor on
most other large vector computers.

The vectorized 15 ° code is just as short and simple as a conventional code. After
all, they both do exactly the same computations, just in a different order. And with the
ald of a few macro preprocessor statements to suppress “vectorized” subscripts, my pro-
gram is just as clear.

Lastly, as discussed in Levin, 1984a, the parallel-vector approach extends easily to
higher order finite differences. One needs to increase the amount of padding on the

input data and add a few more diagonal planes to the storage requirements.

SUMMARY

Truly fast finite-difference migration is a reality on large vector computers. The
program organization outlined in the references and illustrated in the appendix is an

excellent way to achieve 1t.
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APPENDIX A. MIGRATION PROGRAM LISTING

The following pages list my vectorized 15 ° finite-difference migration program parmig.
Notice that the input, output and velocity data are in processed in normal, i.e. untran-
sposed, trace order. I've split the usual tridiagonal solver into two parts, trifac and tri-
ply, moving the former outside the main loop to avoid needless duplicate computations.
The Fortran compiler would do the same code movement if I expanded these inside the
main loop of parmig. Also, I've made liberal use of macro preprocessor statements to
hide unimportant subscripts and improve readability.
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Halley's comet, 1985-1986:
This has been dubbed the "worst apparition in recorded history". The problem is that it is too

symmetrical: instead of one close approach as in 1910, we get two mediocre ones. Also, when

the comet is closest to the sun and brightest, the earth is almost exactly on the opposite

side of the sun. The entire central portion of the comet's loop about the sun was lost in the
glare. Of the two approaches, the April one was the brighter: the comet was both closer and

also intrinsically brighter due to its recent baking after it rounded the sun in February.
However, the comet faded unexpectedly quickly before the April encounter: by April 7, when it
was predicted to be brightest, it had dimmed substantially and lost most of its tail. Those that
travelled to Australia were disappointed. However, those that had clear skies in late March were
rewarded with a very nice view of the comet standing on its head on the ‘southern horizon.
(The April encounter was very far south in the sky; hence the reason to travel to the
southern hemisphere.) Huge crowds mobbed Mt. Hamilton at that time, due to an erroneous
article in the San Jose paper | which led most people who read it to believe the comet
would disappear the next day. The view wasn't as good as in 1910, but the crowds were

probably even bigger, the was good, and it looked 1ike a comet, THE comet...
--JAD
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