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Test your migration I1Q

Stewart A. Levin

INTRODUCTION

The ten questions posed below came up in various discussions about post-stack
migration, modeling, and conjugate-gradients during the last year. I found them chal-

lenging and learned several interesting things trying to answer them.

STOLT

Migration and modeling are best understood for the isotropic, constant-velocity
earth model. Stolt’s migration algorithm is so simple and transparent that I always
wondered why Bill Harlan needed to formalize its properties in his three page SEP-35
article “Linear properties of Stolt migration and diffraction.” There he worked out for-
mulas for the transpose (adjoint) and least-squares inverse of Stolt migration. In the
Fourier domain his formulas may be described as

Operator Transpose
Migration NMO cos 6 INMO (1)
Diffraction INMO sec 6 NMO

where NMO represents the Stolt frequency downshift w — k, with w? = k2 + v2k,?
and cos 0 is the ratio k /w. INMO is the (least-squares) inverse NMO which zero fills
the evanescent region.
1)  Back in the time-space domain, Stolt migration
a) preserves the amplitude of dipping events, or
b)  decreases the amplitudes of dipping events, or

¢) increases the amplitudes of dipping events?

2) True or False? This definition of diffraction is unbounded in the L2 (root-

mean-squ are) sense.
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Jon Claerbout, in ‘“What is the transpose?” (SEP-42) gave his own versions of Stolt
migration and its transpose. These are

Stolt = FT — NMO — FT! (2)
StoltT = FT — NMOT — FT-!

with the conclusion that ““... the transpose to Stolt modeling is Stolt migration, provided
that you forget the Jacobian, as I usually do.” Comparing, we see that Jon has chosen to

define Stolt migration as the transpose of Harlan’s definition of diffraction.
3)  The proper conclusion is that
a) NMOT = INMO sec 6, or
b) one of them has made a mathematical error, or

¢) we’re trying to comparing apples and oranges.

PHASE-SHIFT

Stolt’s NMO cos # migration is derived by the change of variables w — k, in the
(constant-velocity) phase shift migration

after removing evanescent energy.

In SEP-42, Claerbout also showed that the transpose of this (i.e. INMO) is model-
ing by “upward continue and add”:

with the same restriction to the nonevanescent region.

An alternative to zeroing the evanescent region is to allow k, to go imaginary
thereby applying exponential gain or decay in that region. Let’s now choose exponential
decay in both (3) and (4) for evanescent waves in the interests of stability. It is easy to

verify that (3) and (4) are still transposes.

SEP-48



Levin

149 Magration IQ Test

A more direct method of phase-shift modeling is by marching the “exploding

reflectors” ¢ =0 snapshot of the subsurface forward in time:

1
var

Pk, ,t) = [ e M(k, ,k,)dk, (5)

Which of the modeling equations (4) and (5) produce evanescent waves?
Under what restrictions?

Reverse-time migration would run equation (5) backwards, using the time sec-

tion as a source at the surface 7==0. [s this equivalent to
a) the transpose of Stolt diffraction, or

b)  Stolt migration, or

o

) the transpose of equation (5), or

d) none of the above?

KIRCHHOFF

Rothman, Levin, and Rocca (1985) noted ... the equivalence of NMO stretch in
Kirchhoff migration and the frequency downshift of migrated dips, reconctiling ray- and

wave-theoretic views of migration.” Consider now “hand migrating” a dipping segment.
g g g pping seg

Let T be its unmigrated time duration and suppose its subsurface dip is 8. Let the con-

stant migration velocity be v .

6)

Compute the following quantities:
a) the spatial width of the unmigrated event,
b)  the time duration of the migrated event, and

¢)  the spatial width of the migrated event.

Taking into account the frequency downshift of NMO stretch mentioned
above, by what factor would the sum-of-squares of the amplitudes on the dip-

ping event change as a result of migration?
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FINITE DIFFERENCE

Consider now the 15 ° equation
P, T T T 5 Pzz (6)

again assuming constant velocity. Figure 1 outlines pictorially how this is used in
discrete form to do finite difference migration. In SEP-38, this author noted that reord-
ering the computations along lines parallel to the diagonal image is one flavor of

reverse-time migration as these are lines of constant time. In particular the diagonal is

the image condition ¢ = 0 and the area above the diagonal corresponds to ¢ < 0.
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FIG. 1. 15 ° finite difference migration. The spatial coordinate 2 runs into and out of
the page and is suppressed. The time section to be migrated is placed on the left-hand
edge of the triangular grid, zeros placed along the bottom and a two by two differencing
star is used to fill in the grid. The migrated image is then read off the diagonal.

Let’s now try to run migration “backwards” to make a 15 ° modeling algorithm.
After placing the subsurface model on the diagonal, we still can’t get started. We need

to specify values just above (or just below) the diagonal in order to begin marching.
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8)  Which of following determines suitable values for the desired initial off-
diagonal information?

a)

b)

Place zeros above the diagonal since the exploding-reflectors model is zero
before time zero.

Use the 15 ° modeling equation
2

PtT:+%Pzz (7)

to extrapolate the model one At forward in time to fill in just below
diagonal.

Shift the diagonal sideways to extrapolate below the diagonal.

None of the above are satisfactory for 15 ° modeling.
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FIG. 2. 15 ° finite difference modeling. Again the z -axis is suppressed. The input sub-

surface ¢ =0 sn

apshot is placed on the left-hand edge of the triangular grid and a two

by two differencing star is used to fill in the grid. The output time section is then read

off the diagonal.
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Of course all this fuss could be avoided by simply using equation (7) to do 15 °
modeling directly. This setup is pictured in Figure 2. The subsurface model is placed on
the left edge of the grid and the modeled time section extracted from the diagonal. The
direction of recurrence is now, unlike in migration, from top to bottom. So again we

need to determine values above the diagonal image in order to get started.

9)  Which of following determines suitable values for the desired initial off-

diagonal information?

a) Place zeros above the diagonal to force zero pressure above the earth’s

surface.

b) Reflect information across the diagonal to specify a zero-slope free surface
condition.

c) Extend the triangular grid above the diagonal to form a square and place
zeros at the top of the square.

d) None of the above are satisfactory for 15 ° modeling.

10) Which, if any, of the methods outlined in questions 8) and 9) above is the

transpose of 15 ° migration? the inverse?
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DISCUSSION

Surprisingly, Stolt migration generally preserves amplitudes of dipping events
unless they contain evanescent energy in which case amplitudes will decrease. The
easlest way to see this is the phase-shift integral (3) from which Stolt migration is

derived. In terms of § we can rewrite (3) as

Mk, 7)) — \/i_ﬂf 9T Pk Ve ®)

so for a fixed dip, M (k,,r) = P (k,,r cos §) and amplitudes are redistributed but

preserved. So Stolt migration steepens and stretches out the wavelet on a dipping
event without changing amplitudes.

The presence in the formula of sec 0, which goes to infinity for 90 ° dipé, does not
automatically mean the operation is unbounded because the INMO operator may
(and indeed does) cancel out some or all of the apparent singularity. A short proof
of unboundedness is the following:

Let D be the diffraction operator. Then DT D is scalar multiplication by sec 6
and so is unbounded. If D were bounded, then (Reed and Simon, 1972, 185-187)
D and DT would have the same norm and the norm of D7 D would be its square
and hence also bounded. So we conclude this definition of diffraction is unbounded
in the L 2 sense.

It’s interesting that a similar conclusion also applies to ordinary normal-moveout
correction of CMP gathers. So the primary effect of pseudo-unitary NMO (Biondo
and Claerbout, SEP-44) is to apply dip-dependent scale corrections.

This came up while reading a comment by Stolt on 3-D migration (Stolt, 1984).
There he pointed out that from P of equation (4) one can reconstruct the same M
by means of either the propagating or the evanescent part of P. Doing the ‘“Stolt”
change of variable k., — w in equation (5) shows it is the same as Harlan’s

definition of diffraction and so has no evanescent component.

This is a tough one. At first view reverse-time migration would seem to be
“backwards-continue and add” and so would be the transpose of equation (5) just
as equation (4) was the transpose of (3). But reverse-time migration would be more
appropriately termed ‘“backwards-continue and replace” with the time section
specifying the wavefield at the earth’s surface rather than adding to an existing
wavefield as modeling by “upward-continue and add” would. So it’s not answer
(c). And since it includes evanescent energy as well as propagating energy it isn’t
(a) or (b). In fact the correct integral expression is equation (3) with the above-

mentioned choice of exponential decay in the evanescent region.
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These formulas assume the velocity v has been previously halved as is customary
in discussing post-stack migration.

The wavelet is stretched out over a length sec 6 longer after migration. The width
of the event is shrunk by cos?0. So the sum-of-squares is changed by sec 6 cos?d or
cos 6. So we conclude that migration reduces the energy in a section even though it
preserves amplitudes. Correspondingly, diffraction increases energy by the same
amount sec §, verifying the conclusion for question 2).

Until recently I hadn’t given any real thought to 15 ° modeling as a multitude of
high-dip accurate modeling programs have been readily available. I got into 15 °
modeling when studying the transpose of 15 ° migration. So I was startled to find
that method a), which seems so logical and straightforward, does not leave hor-
1izontal reflectors alone but instead turns them into step functions as illustrated in

Figure 3.
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FIG. 3. The computational grid produced when method a) is applied to a single, flat
event. The impulse on the diagonal turns into a step function on the time section.

I pondered this and realized that migration would produce nonzero values above
the diagonal, so I needed to figure out what these ought to be. I asked around and
found out that Dave Hale had simply copied the diagonal sideways when generating
synthetics for classroom exercises. This is the correct thing to do for flat dip
events, but migration would do something other than this to dipping events. So I
decided what I needed to do was b), extrapolate values for the off-diagonal using

15 ° modeling equation (7). This worked fine for flat dip synthetics but was
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unsatisfactory when applied to a 15 ° migrated CMP gather of field data as seen in
Figure 4.
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FIG. 4. A CMP gather (a) and (b) the result of 15 ° migration followed by 15 ° modeling
using extrapolated off-diagonal values.
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I finally figured out that I wasn’t using the transpose of 15 ° migration. The tran-
spose algorithm extrapolates each element on the diagonal sideways using zero
entries in the differencing star everywhere else. This is the finite-difference analo-
gue of the phase-shift “upward-continue and add” algorithm discussed earlier. As
Figure 5 shows, this yields a satisfactory 15 ° modeling scheme. And indeed this is

what I will use in the future when I need to do 15 ° finite difference modeling.

As an afterthought I went back and tried the “flat-dip” method of copying the
diagonal sideways. Surprisingly, as you may judge from Figure 6, this worked quite
well, even though the more sophisticated extrapolation method b) did not. It
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FIG. 5. The result of applying 15 ° migration followed by its transpose to the CMP
gather of Figure 4a. This has done a fine job of reconstructing the original gather.

would appear then that to get a good result it is advisable not to use model infor-
mation from shallower traveltimes to extrapolate below the diagonal.

As illustrated in Figure 7, method a) is unsatisfactory because it differentiates flat
reflectors, method b) is significantly better, but it doubles the amplitudes of flat
events, and method c), by extending the grid above the surface 7 = 0, removes any

generated “downgoing” waves at the surface and so does not modify flat reflectors.

Of course results a) and b) are what would be produced by more sophisticated
modeling programs as well when faced with zero value or zero slope boundary con-
ditions at the surface of the earth. But migration is usually asked to leave flat
reflectors alone. There are two factors that justify this. First, if a reflector were
truly a source, wave theory predicts that the recorded wavefield would be an
integrated version of the source. Fortunately, the exploding reflectors model deals
with an effective source which is the original downgoing waveform differentiated by
the process of reflection. So the integration and the differentiation cancel each
other out and flat reflectors are unchanged. In this argument the surface of the
earth is assumed to be transparent. However the second factor is that preprocess-
ing, such as marine de-ghosting and deconvolution, largely correct for phase distor-

tions produced by the nonzero reflectivity of the earth’s surface. So it is indeed
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FIG. 6. The result of applying 15 ° migration followed by 15 ° modeling using “flat-dip”
extrapolation to get started. This is quite as good a result as the transpose of 15 °
migration produced in Figure 5.

10)

legitimate to assume the surface is transparent when we are ready to migrate

seismic data.

The discussion of question 8) showed that none of the algorithms suggested in ques-
tions 8) or 9) are the transpose of 15 ° migration. Nor are any the inverse because
the bottom zero boundary condition of migration is the same as assuming the time
section to be zero for all sufficiently large ¢, a condition that does not hold for the
various impulse responses which are nonzero for all computed times greater than or
equal to the traveltime of the impulse. One could use an iterative, conjugate-
gradient method to come up with suitable off-diagonal values so that a marching
scheme would become close an inverse to migration. This approximation would
start with, say, zeros for the off-diagonal and use the transpose followed by migra-
tion to get a residual mismatch with which to adjust the off-diagonal estimates. As
the iteration proceeded, the residuals would in general decrease towards zero and
we’'d converge to an inverse to migration. While I see no point in concocting an
inverse to 15 ° migration, especially with such nonphysical behavior at late times, it
would be possible to modify this procedure to predict more appropriate bottom

boundary conditions so as to reduce migration ‘“smiles” in the deeper section.
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FIG. 7. Computational grids for forward 15° modeling under the three different
assumptions of question 9). Only method c) leaves the flat event alone.
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Weird code, part 2

Here is another weird program which came over the net recently. Again, it is in the C

programming language, and supposedly compiles and runs.

2. The worst abuse of the C preprocessor:
(submitted by Col. G. L. Sicherman <decvax!sunybcs!colonel> )

#define C_C_( )~' '&_
#define _ _C( O ('\b'b'"\b'>=C_C>'\t'b'\n")
#define C_C |
#tdefine b *
#define C /b/
#define V C C(
main(C,V)
char **V;
/% C program. (If you don't
* understand it look it
*/ up.) (In the C Manual)
{
char |

while‘(?’ééd(o,&_,l) & write((_=(_=C_C_(_),C)),
€ ,1)) =C-V+subr(&v);

}

subr (C)

char *C;

{
C="Lint says Yargument Manual isn't used." What's that
mean?"; while (write((read(C_C('"'-'/*"'/*"*/))?_~:__-_+
'\b'b'\b'|((_-52)%('\b'b'\b'+C_C_('\t'b'\n'))+1),l),& 1))

)

[ This program confused the C preprocessor so badly that it left some
comments in the preprocessed version. Also, lint DID complain that
"argument Manual isn't used". ]
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