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High-order finite-difference reverse time migration
with the 2-way non-reflecting wave equation

John T. Etgen

INTRODUCTION

Most conventional migration schemes impose limits on the generality of the earth velocity
model and /or the dip of waves traveling through this model. Finite-difference migration schemes
also face a limitation on the frequency content of the wavefield because the second order derivatives
usually employed are accurate only if wavefields are heavily oversampled. Because the amount
of core memory in computers is regrettably finite, the oversampling requirements also translate
into a restriction on the size problem that can be solved. In this paper I will present a migration
method that can be used for any general earth velocity, that can propagate waves in all directions,

and reduces the amount of sampling required to propagate waves accurately.

REVERSE TIME MIGRATION

I will discuss a method of migration that uses a time-reversed stacked section (assumed zero-
offset) as a time-variable boundary condition for wave propagation in an earth velocity model.
This method, known as reverse time migration has been discussed before by (Whitmore,1984),
(Sherwood, Kosloff, and Baysal; 1984) and (Levin, SEP-37). With this method, migration of
zero-offset, stacked data propagates the observed wavefield back into the earth and chooses the
position of wavefield at the time corresponding to the zero-offset reflection time as the earth image.
This differs from conventional migration in that waves are propagating in time, rather than being
extrapolated in depth. Like most post-stack migration procedures, this procedure relies on the
ezploding reflector model of zero-offset seismograms. Reverse time migration proceeds by using
time slices of the stacked data, taken progressively shallower off the bottom of the stacked section
as a boundary condition for wave propagation in the specified velocity model. We can think of
this as using the geophones on the earth’s surface to play the recorded wavefield backward in

time, causing this wavefield to propagate back into the earth along the path it followed going
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toward the surface when it was recorded. The stacked section is played back in reverse order,
because the latest arrivals in general have the greatest distance to travel back into the earth.
The earth velocities are halved to account for the one way propagation of the exploding reflector
model versus the actual two way propagation of a true zero-offset experiment. Thus, when all of
the stacked section has been “played back”, and time equals zero has been reached, the wavefield
is at the position of the reflecting interfaces, Assuming the correct velocity v(z,z) was used in
the model. There is some freedom to choose the method we wish to propagate the wavefield
through the velocity model. Use of the scalar wave equation allows any general velocity model
and propagates waves with all dips. However, the scalar wave equation will generate reflections
from waves passing through interfaces in the velocity model. These extra internal reflections
are annoying because they do not fit our primaries-only model of the stacked data, nor do they
correspond to the position of any reflector when the time equals zero imaging condition is applied.
Smoothing the velocity function v(z, z) reduces the amplitude of the internal reflections, but this
is not always physically realistic. John Sherwood et. al. (1983) developed a variation of the
scalar wave equation that will not generate internal reflections off velocity interfaces for waves
passing through velocity boundaries at near normal incidence. This equation is called the 2-way

non-reflecting wave equation.

THE 2-WAY NON-REFLECTING WAVE EQUATION

To derive the 2-way non-reflecting scalar wave equation, examine the full 2-way scalar wave

equation given in (Claerbout, 1984):

PU_ 5 10U o 1 ou o
dt? 9z p(z,z) Oz ' Iz p(z,z) Bz

Where K (bulk modulus)= p(z, z)v?(z, z) Now introduce the variable:
Z = p(z, z)v(z, 2)

which has physical meaning as the acoustic impedance; and rewrite the equation with v(z, z) and

Z as the space variable properties:

U 0 v(z,z) U 3 v(z,z) U
e 2G5z el @
If we set Z=constant, factor it out of the equation, obtaining:
9tU ] au 9 au
Z - - 4 = il 3
at? v(z,2) [azv(z,z) oz + azv(z,z) Bz] (3)
Or equivalently:
U 9 U 8 ov(z,z) U  dv(z,z) U
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Equation is the 2-way non-reflecting wave equation. The derivation is often called impedance
matching. Notice that Z = p(z, z) v(z, 2) causes the reflection coefficient to be zero, strictly
speaking, for normal incidence only. The non-reflecting behavior of the equation is not perfect

for non-normal incidence, but for most practical applications it works quite well.

HIGH-ORDER FINITE-DIFFERENCES

Spatial second derivatives

As noted before, most finite-difference migration schemes use second order difference operators
to approximate the spatial derivatives in the scalar wave equation (or its parabolic approximation).

However, this second order approximation :

A%z [Uit1 — 2U; + Ui—q] + O(A2?) = %Z—Z (5)
is only a close approximation to the second derivative for large spatial wavelengths. Grid disper-
sion commonly occurs when the spatial sample interval is not sufficiently small. A common rule
of thumb with second order operators is to allow about 16 sample points per shortest wavelength
to prevent grid dispersion. If we allow the use of the explicit method of finite-differencing, higher
order finite-difference operators can be used to improve the accuracy of the spatial derivatives. To
derive the centered finite-difference operator for the second derivative, write out the taylor series

approximation to the function U centered at the #** grid point for a point n grid points away:

3 3* ,  18°
Uitnaz :U,~+a UinAz + — —U; (nAx) 3'8 3

2'62 —U; (nAZ)® + - .. (6)
Now take the sum of the two taylor series for points symmetric about the i** grid point, which

eliminates all odd power terms:

2 92 at
Uitnaz + Ui—naz) = 2U; + 2133 ——Ui(nAz )2 + D132 ——Ui(nAz)* + - .. (7
To create a high order finite-difference operator, weight terms with n = 1,2, - - -nmaz in a manner

that causes the cancellation of terms greater than second order. Obtaining the correct weights
involves solving a system of linear equations for the weights. If two terms are used corresponding
to n = 1 and n = 2 the fourth order term can be eliminated by choosing the correct weights.
To cancel up through the eighth order terms, weight and combine the terms corresponding to

= 1,2,3,4 in equation (7). Then a weight is applied to the constant term U; to cancel it

from the resulting sum with the other weighted terms, leaving the second derivative term and a

remainder of order Az2nt+2
nmaz U "
Woli + Y. WalUitnaz + Uimpas) = 5 2(A 7) +Oo(Agimast?) (8)
n=1
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Subsequently, I used either the fourth order approximation or the eighth order approximation

for all spatial second derivatives.

Spatial first derivatives

The first derivatives can be found in a fashion similar to that used for second derivatives.
Instead of forming the sum of the symmetrical points about the i** grid point, form their difference,

causing all even order terms to vanish:

Ustnae = Ui-nas) = 20Ui(naz) + 22 0inacf + 2.2 pinan)® - (9)
t+nAz t—nAz Az [ 3193 i 51 95 i
Again, Taking weighted combinations of these terms for n = 1,2,: - ‘nmaz will allow the

elimination of higher order derivatives up to the term of order Az***! With the weights again
determined by solving a system of linear equations.

nmazx a

Z Wn[Ui+nA:c - Ui—nA:c] = EUi Az + O(Az2nmaz+1) (10)
n=1

Dividing by Az gives a first derivative operator, centered at the ¢** grid point with error of

order Az?"™#%  This concludes the Taylor series derivation of high-order spatial finite-difference

operators.

Time derivatives

It is possible to calculate high order approximations to time derivatives in the same fashion
as spatial derivatives. However, when using an explicit method, this is undesirable because no
information is available at time levels above the present, and operators that are not centered
at the present time level are often unstable, or require more complicated updating schemes. A
high-order centered difference for the time derivative would also require more memory locations
per grid point than we would like. Mark Dablain (1986), presented a method to increase the order
of the accuracy of the time derivatives without having to resort to more complicated operators
for the time derivative. I will outline his approach using the scalar wave equation, then derive
the very similar result I used for the non-reflecting wave equation.

Begin by noticing that the second derivative in time can be expressed using the taylor series
- a? 1 1 04U

ﬁU = E{[Ut+At —2U; + Us_pe] — o } (11)
The first part is the standard second-order difference quotient that is commonly used. The second

term involves the fourth derivative of U in time. The accuracy of (11) would be fourth-order if we
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had a good estimate of the fourth derivative in time. Dablain noticed that the fourth derivative

in time could be computed from the scalar wave equation :

8t 82 3. a? aU

U
= — [ = Z_},2 - it
5’ = 3! ) = at? {v (=z,2)] 92 | B4 ]} (12)
Or using the equivalence of time derivatives with spatial operators, rewrite this as:

otU 9* , W oW, &
a3 = V@ g @G + 5l + 5

U o }

2
@)y + 9ql) (1)

Therefore calculate the fourth derivative in time by cascading the wave equation upon itself. In
practice, Dablain approximated this calculation by assuming that the velocity was largely constant
except at isolated interfaces and pulled out the velocity from the cascade of derivatives:

Thus, the scheme updates the wavefield with the familiar explicit finite-difference method,
with the addition of a correction term to the time derivative. I extended this method to the
2-way non-reflecting wave equation in a similar fashion. Once again, the second derivative of U
in time is the same as (11). Realize that the fourth derivative can once again be computed from

the governing wave equation:

U, U U dv(z,z) OU  dv(z,z) U
oz =~V (@A g + gl Hel Al g+ =5 5] )
By expressing the fourth derivative in time as:
oty 9%y, 32U 9WU dv(z,z) OU  dv(z,z) U
or = V@) [z + )+l = G + T Frl (14)

Then once again, use the relationship between 5%2; and the spatial derivatives to calculate the

fourth derivative in time: .
oU
Er = ﬂ[ﬂ[U]] (15)

Where : 52 52 Bu(z,2) 8 Su(z, 2) 0
U U v(z,z2) oU v(z,z) oU
_ 2 > )
HU =vmalgm + 5l + vl " 5, + =5, 5, (16)

I made the assumption that the first derivative term is small, and approximated the fourth

derivative correction term (15) using only the second derivatives in £ for the outer operator,
giving: . , \

83714] ™ vz(x,z)[é%-i-aa—z;] [ﬁ(U)] (17)
The approximation I made was not essential, one could resubstitute the entire equation in itself,
however, this would effectively double the computational cost of the method. I believe the approx-
imation is justified, because for most geologic models, the velocity is constant or slowly varying

over most of the model, with the large changes in velocity being distinct boundaries. This causes

the term with the first derivatives to be small, or zero over most of the geologic model. Another
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Figure 1: Input wavelet to the dispersion tests of the various order algorithms. Horizontal axis is

time (sec), vertical axis is amplitude.

view of this is the fact that the term containing second derivatives controls the actual wave prop-
agation, while the term containing the first derivatives merely acts to suppress reflections. So the
most important part of the behavior of £ is contained in the second derivatives. To further speed
the computation of the correction term, the two spatial second derivatives in the correction term
(17) were computed using a fourth- order scheme when the eighth-order spatial derivatives were

used to compute the spatial derivatives in the main equation.

RESULTS

Wavelet tests

Three algorithms were run to examine the computational and kinematic behavior of the con-
cepts I presented. The most simple algorithm used the standard second-order time derivatives and
used fourth-order spatial derivatives. The second algorithm used the fourth-order time deriva-
tive and the eighth-order spatial derivatives with the fourth-order correction term calculated
with fourth order spatial derivatives. An algorithm using an alternating direction implicit (ADI)
method (second-order derivatives in z,z and time) was run for comparison. The first series
of figures shows the input waveform and the waveform after 300 time steps were taken for each
method. The velocity in the first 600 meters was 3500 m/sec and the velocity in the last 600

meters was 2500 m/sec. For each case, the grid point spacing was Az = Az = 6m, and the
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Figure 2: Waveform in depth for second-order differencing in time and z, z algorithm after 300 time

steps . Grid dispersion distorts the wavelet. Horizontal axis is depth; vertical axis is amplitude.

second order T fourth order Z s X

e 200 400 =00 SO0 1000 1200

Figure 3: Waveform in depth for second-order differencing in time and fourth-order differencing in
z,z algorithm after 300 time steps. Almost no dispersion is present, although a slight phase-shift

is apparent. Horizontal axis is depth; vertical axis is amplitude.
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Figure 4: Waveform in depth for fourth-order in time and eighth-order in z, z algorithm after 300

time steps. The wavelet is faithfully propagated; there is no dispersion. Horizontal axis is depth;

vertical axis is amplitude.

time step size was 1 msec. Figure 1 shows the input waveform as a vertical section through a
horizontal plane-wave. The input waveform has a high-cutoff frequency of 70 Hz. Therefore the
number of sample points per highest wavelength in the upper medium is 8.33 and in the lower
medium is approximately 6. Figure 2 shows the waveform for the second-order in time and z, 2
ADI method after 300 time steps. The waveform is suffering from a great deal of grid dispersion.
The high frequencies are traveling slower than the low frequencies which gives rise to the phase
distortion and the long tail. Figure 3 shows the waveform for the second-order in time, fourth-
order in z, z algorithm. The waveform is reasonably well preserved, there is only a slight amount
of phase distortion . Figure 4 shows the waveform of the fourth-order in time, eighth-order in z, 2
algorithm. The waveform exhibits essentially no distortion at all. All spatial wavelengths travel

at the correct velocity.

Synthetic examples

The next sequence of figures shows time snapshots of the wavefield during reverse time mi-
gration for a data set supplied by Zhiming Li. The time section has 128 traces of 4 seconds
of data. The spatial sampling is Az = 40m. The time sampling rate is .002 seconds. Figure
5 shows the zero-offset section input to the reverse time migration programs. The travel times
were determined analytically by Li, et. al.(1984). The correct velocity is v(z) = 1000 + z m/sec.

The profile is a model of a high-angle reverse fault, and the object of the migration is to image
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input zero-offset data
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Figure 5: Synthetic zero-offset data used as input to the migration algorithms. Note the steeply

dipping reflections from the fault interface.

both sides of the steeply dipping fault interface. The velocity model with the correct velocity was
discretized with Az = 40m, Az = 10m. The grid size was zmaz = 128 by zmaz = 200. Both
algorithms, second-order in time, fourth-order in z,z, and the fourth-order in time, eighth-order
in z,z were run on the input data of Figure 5. Figure 6 shows a snapshot of the wavefield at
time=1.0 sec, for the fourth-order in time, eighth-order in z,z algorithm. Three seconds of the
input data have been propagated back into the model. The wavefield is propagating back toward
the position of the reflecting interfaces in the model. In particular note the two steeply dipping
events that correspond to the reflections of each side of the steeply dipping fault. Figure 7 is a
snapshot of the wavefield at time=.6 sec. More events have been reintroduced into the model,
while the previous events have propagated closer to the corresponding reflector positions. At this
point in time, the wave from the underside of the fault interface is vertical. A migration program

that did not account for the possibility of two-way propagation or did not save the evanescent
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wavefield snapshot t=1.0 sec
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Figure 6: Snapshot of the wavefield in depth for time=1.0 sec. Migration with the fourth-order

in time, eighth-order in z, z algorithm.
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wavefield snapshot t=—.6 sec
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Figure 7: Snapshot of the wavefield in depth at time=.6 sec for the fourth-order in time,

eighth-order in z,z algorithm. Note the vertical wave that will image the underside of the

fault-plane reflection.

SEP-48



Etgen 144 High-order finite-difference

final migrated image t=0.
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Figure 8: Final depth image of the wavefield at time=zero for the fourth-order in time eighth-order

In z, z algorithm. The fault-plane is correctly imaged from both sides.

energy for a later procedure would fail to image the underside of the fault-plane correctly. Figure
8 is the final migrated depth image of the wavefield. The time equals zero imaging condition
is applied now, and the position of the wave field is the position of the reflecting interfaces in
the earth. Note that the underside of the steeply dipping reflector is imaged correctly. There
are some artifacts present in each of the snapshots of the wavefield. The semicircular “smiles”
are reflections off an incompletely absorbing boundary, or are due to the truncation of the data.
There is also some grid dispersion from the waves that traveled horizontally. This is due to the
fact that the sampling interval for the z axis was 40m. The shortest wavelength in the middle
of the section was approximately 66m. The wavelengths are even shorter in the shallow part of
the model due to the velocity gradient. The fact that the z axis is undersampled caused even
the high-order operator to exhibit grid dispersion on the horizontally traveling waves . The flat

dips exhibit little distortion since they are sampled at about 6 points per shortest wavelength
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final migrated image t=0.
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Figure 9: Final depth image at time=zero of the synthetic data for the second-order in time

fourth-order in z, z algorithm. Compare to figure 8.

for the middle depths of the velocity model. It might seem puzzling that the algorithm does not
break-down entirely at high frequencies for horizontally traveling waves, because the wavefield
is sampled less than the nyquist criterion. I believe that the algorithm does not break-down,
because of the peculiar nature of waves propagating through a turning point. The wavefronts are
vertical at the turning point, but they propagate mostly in the vertical direction. All of the time,
the wave has a significant component of vertical motion, so the wave is better sampled than the
1.5 points per wavelength implied by the horizontal sampling. Figure 9 is the final depth image
obtained from the second-order in time, fourth-order in z, z algorithm. The result is very similar

to Figure 8; there is slightly more grid dispersion, but the image is the same.

Computational highlights

The reverse time migration process with the two-way non-reflecting wave equation is highly
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vectorizable on our Convex C-1. The calculations mainly consist of many convolutions with the
derivative operators. To run the migration of the fault-plane model on a 128 by 200 grid required
171 CPU seconds for the second-order in time fourth-order in =,z algorithm. Counting both
adds and multiplies, this translates to a little over 15 million floating point operations per second
(Mflops). A similar problem on a 168 by 220 grid with 2048 time steps took the fourth-order in
time eighth-order in z, z algorithm 406 CPU seconds. Once again, counting adds and multiplies,
this translates to 15 Mflops as well. The reason the Mflops rate seems so high for the more
complicated algorithm is that one grid-point update requires about twice as many computations

compared to the second-order in time fourth-order in z, z.

CONCLUSIONS

High-order finite-difference operators offer the advantage of more faithful propagation of wave-
fields, while still retaining the simplicity of second-order operators. Course grid calculations with
high-order finite-difference operators enable us to calculate more complicated and bigger models,
more accurately. The 2-way non-reflecting wave equation and reverse time migration provide a
powerful tool to image the earth’s subsurface in areas of complicated structure and heterogeneous

velocity.
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