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Cascaded 15 degree equations simplified

Stewart A. Levin

INTRODUCTION
At the 1985 Washington, D.C. SEG meeting, Beasley and Larner applied principles

of residual migration to produce inexpensive, wide angle migrations by cascading 15
degree migrations with small velocities. In Velocity extrapolation by cascaded 15 degree
migration (this volume), Jon Claerbout goes them one better by deriving a simple equa-
tion to allow incremental migration velocity steps to be applied directly to a section
rather than indirectly via 15 degree migration with a tiny velocity. I was dissatisfied
with the derivations for both of these equations and set out to find simpler ones. Lastly,
while generating figures for another article in this volume I happened on a novel instance

of Li’s linearly transformed wave equation.

BEASLEY AND LARNER
Stolt migration (Stolt, 1978) consists of frequency downshift in the (w,k, ) plane

plus scaling by the Jacobian of the coordinate change. (See also Levin, Test your migra-
tion 1Q), this volume.) 15 ° constant velocity migration may be similarly described but
with a different frequency downshift (see, e.g. section 5 of Jakubowicz and Levin, 1983).

Specifically, the frequency downshifts are given by
90 °: sgn (w) v/w? — v%k,2
15 °: w - v 2k, /2w (1)

Letting k (o) = sgn (w)y/w® ~ av?k,? so that w — k(1) represents 90 ° migration, one

way to evaluate k  is to integrate the first order differential equation

dk, v2k,2 @
dao 2k,

with initial condition & ,(0) = w. Discretizing this with Ao = 1/N gives a cascade of

frequency downshifts that take the form
k, — k,—vZ%,2/2Nk, (3)

which is 15 ° migration with velocity v /N as used by Beasley and Larner. They also
noted that the discretization of « is not required to be uniform.
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Actually, the above argument has only shown that the frequency downshift of cas-
caded 15 ° migrations approximates that of 90 ° migration. There are also the Jacobian
scaling factors to consider. For 90 ° migration this factor is k,/w and for 15 ° migration
it is (2 — k,/w) . Thus for cascaded 15 ° migrations we divide by

k,+ Ak, Ak,
2 L 7T - 4
k kT ()

T

at each step. Taking logarithms and dropping terms higher than first order as Ak, — 0,
converts the product to the integral

1 dk

T

Oy R

which is In(k (a)/k (0)). Exponentiation therefore gives the cascaded scale factor as
k ,/w, matching 90 ° migration.

There is nothing magic about using 15 ° migration in the cascade. One may use
higher order migrations as well, such as 45 ° and 60 ° schemes. While they tend in prac-
tice to be slower than 15 ° algorithms, this is compensated by their higher order fit to
the 90 * semicircle which allows larger velocity steps, thus fewer intermediate migrations.

The limiting case is to use 90 ° migration where anything more than one step is overkill.

CLAERBOUT

Claerbout realized that an essential observation of Beasley and Larner was that for
small velocity 15 ° migration is an excellent approximation to 90 ° migration. Using this
idea he deduced a 15 °-like equation describing the evolution of migrated sections as a
function of v2. His equation is

U t 8*°U

dw dt 2 gg2 (Jon-8)

where w = v? and U(t,z;w) is the time section migrated at squared-velocity w. Actu-
ally, since we are discussing the (velocity) evolution of migrated data, ¢, unmigrated

time, should be 7, migrated time, in the above to agree with conventional usage.

In terms of the previous section, there is a short derivation of Claerbout’s equation
when the Jacobian scaling is omitted. Later I will derive the correct equation to use
when scaling is included. Take the double Fourier transform of migrated data to be
Uk, k,) = P(w(k,),k, ), where, from equation (1),

wk,) = sgn (k) kS + wk,? (6)
and P is the double Fourier transform of the unmigrated time section. Compute
dU /ow and QU /Ok , using the chain rule:

au  _ op kS
aw Jw 2w ;
U _ op ko )
ok , Ow w
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Eliminating w™ 9P /8w, yields

au _ k* au

T Ow 2 0k

;
which, when inverse transformed, is Claerbout’s equation.

A different equation arises when the Jacobian scaling is included. In this event

kP 9
U = w = [ Plwk,) dw (9)
T
and U /Ow may be written as
aU o | k°P
= . 10
ow Bkr{ 2w } (10)
Eliminating P /w gives
oU _ 8 [ KU (1)
Bw ak. | 2k,
which inverse transforms to
au - 9U
T
— - _ L [ =Z= 12

The difference between this equation and (Jon-8) is that the order of the time recurrence

and the multiplication by —7/2 are interchanged.

Both Li and I have gone back over Jon’s original derivation from 15 degree migra-
tion and come up with a simple reason to prefer formulation (12) over (Jon-8). The idea
of Jon’s derivation is that extrapolation with a tiny velocity does little to the data.

Writing 15 degree extrapolation as

oP Aw [ %P

- T2 Oz ?

—_ 13
or 2 ’ (13)

this 1dea has two consequences:

1) A crude finite difference operator is a good approximation to the 8/d7 deriva-
3
tive, and

(2) an initial 7 derivative may be used to extrapolate P a long ways along the 7

axis.

Therefore we approximate (13) with

P (r=t) - P(0) Aw / 8*P

or
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t
t  O°P
= — = 15
which is equation (12) in the limit Aw — 0.

Claerbout points out that equations (Jon-8) and (12) are transposes of each other.
This also follows from Harlan (1983) who showed that the adjoint of Stolt migration is
Stolt modeling without the Jacobian of the frequency shift. Since Jon uses both (Jon-8)
and its transpose it follows that, at least in one direction, he does use (12).
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FIG. 1. Impulse responses for 15 ° modeling with (a) upward continuation and (b) for-
ward time evolution. The apex curvatures are the same but the slopes of the flanks are
markedly different.

LI

An open question with cascaded migration is how to properly incorporate noncon-
stant velocity. The frequency-wavenumber arguments given above provide no clue how
or even if the process can be generalized to variable velocity. In this section I will show
a quite different 15 ° cascade, unrelated as far as I can tell to that discussed previously,

in which I am able to incorporate variable velocity. While this new cascade does not
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solve the underlying problem of how to compensate for an incorrect migration velocity,
it raises the hope that the problem may be tractable.

Figures 1a and 1b show impulse responses for two 15 ° modeling methods: upward-
continuation and forward-time evolution. The former starts below the deepest reflector
with an empty time section and upward continues through the model adding each
reflecting point in at ¢ =0 as the depth of that point is reached. The latter uses the
reflector image as a ¢ =0 snapshot and forward steps it in time, stripping off the result-
ing wavefield at the surface of the earth to form the modeled time section. You may be
struck as I was by how different the shapes of the curves are away from their apices.
Indeed you may speculate that I forgot to halve the migration velocity in the latter com-
putation. This was not the case. The differences are real. The dispersion relation for
the former was given in equation (1)

k vk (16)
= ) —
r 2w
The dispersion relation for the latter is given by
2, 2
vk,
w = k,+ 17
T 2kT ( )
Stationary phase calculations produce the moveout equations
2
z
t = 7+ 18
2702 (18)
for 15 ° upward-continuation modeling and
2
x
t = 7+ 19
2tv? (19)

for 15 ° forward-time modeling. The former describes the z ¢ parabola classically asso-
ciated with the 15 ° equation. The latter may be rewritten

(t -2 = (£ + = (20)

showing it describes a hyperbola.

Suppose now we cascade these two different 15 ° modeling schemes by taking the
output w of modeling with equation (16) and substituting it for k, in equation (17).
Denoting this intermediate frequency &, the final frequency w is related implicitly to k,

by the pair of relations

25, 2
vk
w = &+ Qf (21)
&
and
27 2
vk
k, = &- 25 (22)

SEP-48



Levin 106 15 degree cascades

Adding and subtracting equations (21) and (22) produce respectively

wH+k, = 2 (23)
and
27, 2
vk
w-k, = 2—= (24)
2w
Eliminating 2 @ gives
2. 2
vk
-k, = ? 25
w T (IJ"‘ kT ( )
or
W k2 = 20v%,°? (26)

which is 90 * modeling with velocity v2 v .

So here we have another way of getting high accuracy with the 15 ° equation. Sim-
ply cascade two different 15 ° modeling programs each using half the original squared ve-
locity. A most intriguing alternative to residual modeling with two passes of 90 ° model-

ing with the same reduced velocity as discussed by Rothman, Levin and Rocca (1985).

We will now see that this is really a special case of linearly transformed wave equa-
tion extrapolation (LITWEQ) for constant velocity (Li, 1984). Figure 2 is Li (1984) Fig-
ure 1 rotated 90 ° clockwise. Modeling is performed on this grid by placing the subsur-
face section on the right-hand edge of the triangular grid and propagating down and to
the left using a 15 ° differencing star with velocity v and sampling intervals At! =
A7 = A71/V2 or equivalently velocity v/ = v /V2 and sampling intervals At = Ar.
The center column thus contains a section modeled by 15 ° upward-continuation with
velocity v /\/5 Computations continue past the center column until the left-hand edge
is filled in to produce the final output time section. This second half is clearly forward-
time modeling with a 15 ° algorithm and velocity U/\/§ and completes the cascade to

produce a 90 ° migration with velocity v .

Now that I've shown the similarity to Li’s method, it’s only fair to point out some
differences. First, Li’s method places zeros above the right-hand edge, which I’ve shown
in Test your migration IQ integrates flat reflectors on the input to form step functions
on the intermediate result in the central column. Li also places zeros above the left-hand
edge which I've shown differentiates flat reflectors in the central column. Thus Li’s
method preserves flat reflectors by first integrating them and then differentiating them.

Cascaded 15 ° modeling would preserve them throughout unchanged.

A second difference is that Li’s method works for nonconstant velocity, the cas-
caded 15 ° method only handles velocity variation properly in the second half of the cas-

cade, 15 ° forward modeling, but not in the first half of transposed 15 ° migration.
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FIG. 2. Full wave equation finite difference grid in (¢! ,2’ ). The subsurface model is
on the right-hand edge, the surface time section on the left-hand.

Indeed Li’s result shows the upward-continuation modeling must be done with a time-
variable velocity v (r+2¢). This is in qualitative agreement with Rothman, Levin and
Rocca (1985) where they showed that if you use instead a 90 ° algorithm with RMS velo-

cities, then an impulse in the subsurface model maps to the intermediate curve

s x?
=T v3(r) - 1/2 v¥(t) (27)

a mixture of velocities at ¢ as well as 7.

SUMMARY

Using frequency-wavenumber arguments I've given some simplified derivations for
three useful ways to cascade 15 ° equations. The drawback of these arguments is they
are strictly constant velocity and give no clue about how variable velocity might fit in.
However Li’s independently developed linearly-transformed wave equation does show

how to generalize one of these cascades to nonconstant velocity and thereby offers some
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hope that the other cascades might generalize equally well.
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