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Velocity Extrapolation by Cascaded 15 Degree Migration

Jon F. Claerbout

ABSTRACT

A partial differential equation is derived with velocity squared as the independent vari-

able. One application is velocity analysis.

INTRODUCTION

Jakubowicz and Levin [1983] showed that cascaded migrations in a constant veloci-
ty media can be analyzed by substituting dispersion relations into one another (see IEI p.
118). Rothman, Levin, and Rocca [1985] showed that residual migrations can be done
with the 15° equation, despite possible wave angles much larger than 15°. Larner and
Beasley {1985] concluded that cascading 15° migrations leads to wide angle accuracy. By
examining cascaded migrations, each with an infinitesimal velocity, we will come to a
new partial differential equation that extrapolates in velocity space. The ability to

change the velocity of seismic events leads to new possibilities in data processing.

CASCADED 15-DEGREE NORMAL MOVEOUT

A truncated Taylor series of the normal moveout equation is given by the equation:

A Wi (1)

2t

Define the N*! partial normal moveout by

wit) =t z/v) = - ZL )

Let the N'" partial normal moveout be applied N times, i.e.
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Ty(z)=1n(rn (v (T (- - v (£)))) (3)

I can’t prove it, but T = Vt2 ~ x2/y2% This assertion is confirmed by the plot in Fig-
p 0

ure 1 which shows the first 100 values of N. The curves tend to a semicircle. The plot

program 1is:
do n== 1,100 {
for( x=-4.; x<4.; x=x+.05) {
tau = 4.
do i=1,n

if( tau £ 0.)
tau = tau — x*x / (2 * tau * n)
call plot ( tau, x)

}

FIG. 1. Semicircle approximations of cascaded NMO or of cascaded 15° migration.
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You see that the convergence is not rapid, but by the one hundredth iteration, the accu-

racy is probably beyond any seismological requirement.

Equation (1) becomes the dispersion relation of the 15° nonretarded wave extrapo-

lation equation by the substitutions t—w, 7—k, v—v71

CASCADED MIGRATION

Ordinarily the input of the migration process is a field data set and the output is
an earth model. So, ordinarily it does not make sense to migrate the output of a migra-
tion. However the forementioned workers in residual migration did just that, namely,
took an output of the migration process and used it as an input of a subsequent migra-
tion process. This is called cascaded migration. Here we will take the cascading to its
logical limit, an infinite number of infinitesimal migrations. An infinitesimal migration is

one with an infinitesimal velocity.

Time domain 15° migration is ideally suited for migration with low velocities.
Recall the basic principle of this migration. Retarded time is used so that the image at
t=0 1s found along the diagonal line t'v = z' (see IEI p.6,133). Consider an

infinitesimal velocity Av. Dropping primes, the image line of an incremental migration

becomes
2 = Avt (4)

If Av is small enough compared to the usual migration depth step then the migration

requires just one depth step Az where
Az = Av't (5)

Repeated use of such “single depth step” migration makes a continuum of infinitesimal

migrations.

It has long been noted that the 15° program contains depth and velocity only in
the product v Az so a rescaling of depth is like a rescaling of velocity. Equation (5)
gives Az proportional to time ¢. So, given a 15° program with Az proportional to
t, an alternate interpretation of the program is that Az is constant but the migration
velocity has been replaced by time ¢. Let us express this strange interpretation as a

differential equation.
Starting from IEI equation 2.7.4 but omitting primes, we have

2 2
ov _ v 9U (IEL-2.7.4)
9z Ot 2 9z?

Time migrations do not convert to depth, but to travel-time depth. Converting depth
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z to travel time depth r=z /v yields:

2 3%U

9*U _v?
2 9z?

ot dt

(6)

The difference between extrapolation and migration is that in extrapolation, equation (6)
projects a wavefield a constant distance in 7, whereas migration projects the wavefield to

the image line
T = (7)

Define w = v?2 sometimes called the “levocity.” The “strange interpretation” now
takes the form
U t 9*U

- _t 8

Equation (8) is amazing. Given initial conditions U (¢, 2, w =0) with superposed
hyperbolic events of various velocities (asymptotes), extrapolation along w causes the

hyperbolas to change the slope of their asymptotes!

Initially I was unsure of the constant of proportionality in equation (8). The physi-
cal dimensions are correct. I confirmed the 1/2 by using (8) to generate some hyperbo-
las, measuring the asymptotes, and testing the results with an NMO program. It bears
repeating, that as in Chapters 1 and 2 of IEl, ¢ is the two-way travel time, v is half

the rock velocity, so w is a quarter the rock velocity squared.

Since doing this work I find myself disappointed by my inability to create a clear
derivation. But then, I don’t understand the convergence of (3) either. Zhiming Li sug-
gested that (8) might be derived from (6) by the substitution w Ar= ¢ Aw. Stew
Levin suggested a derivation (which should appear elsewhere in this report) based on the
Stolt integral. Independently, Dave Hale suggested a similar proof. Li subsequently
claimed that the solution speed of (8) is about that of the Stolt integral, without the
wraparound problems. I imagined that the number of required 7 steps would be com-
parable to the number of ¢ steps, but Li got good results with 10-20 steps. I continue
to point out to the young theoreticians that a defect of (8) is that depth-variable veloci-

ty is not included, and it needs to be.
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FIG. 2. Left, synthetic hyperbolas superposed. Other panels are after the two theoreti-
cal moveout velocities.

VELOCITY ANALYSIS

Hyperbola superposition (of various velocities) is the mathematical transpose of ve-
locity analysis. Ordinarily these are done by hyperbolic superposition and summation. I

hope a lower noise level and better invertibility can be achieved by using equation (8).

In classical migration, equation (6) is stepped downward into the earth from the
earth’s surface. In cascaded migration, equation (8) is initialized with surface data to
which we associate w=0. The equation is continued until the desired w (velocity
squared) is reached. Alternately, a hyperbola synthesis program can begin with a zero
valued field U (w pay, £)=0. As U is projected toward w =0, sources are added in at

any desired locations in (¢, w)-space. This is how figure 2 (left) was generated.
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