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Iterative tomography: error projection along ellipses and lines

Marta Jo Woodward

Introduction

The goal of tomography is the reconstruction of a function from a set of line integrals through
that function. Thus, for the cross-hole experiment shown in Figure 1, a tomographic inversion
seeks to transform the 961 first break traveltimes, t;, corresponding to the 961 source-receiver

pairs, j, into the medium slowness function, w—rvia the system of equations
t; = /wdlj(w) i 7=1,2,...961. (1)

Here I;(w) describes the ray optics raypath for the j-th source-receiver pair. When line integrals
exist for all possible paths through a function, the relation between the integrals and the function
may be interpreted as a Radon transform—the inverse of which is known to be unique (Menke,
1984). When the experimental geometry is incomplete, as in Figure 1, the solution contains a
null space, limiting the resolution of the inversion and giving rise to artifacts. The resolution
may be enhanced by constraining the solution with information distinct from the first break
traveltimes—by filling the null space with additional information.

The literature contains many examples of enhanced reconstructions, where the extra informa-
tion ranges from the angle of arrival at three-component geophones (Del Pino, 1985), to statistical
estimates of properties of the ensemble of realizable functions (Hanson, 1983). This paper first
reviews the basic ART algorithm and then describes two modifications of the iterative method as
applied to the simple experiment of Figure 1. The first modification supplements the traveltime
data with diffraction information present in the wavefield immediately following the first break;
the second does not add to the available information but rather smooths it in a manner consis-
tent with the experimental geometry. Both methods differ from the ART algorithm in projecting
iterative slowness corrections back along elliptical regions and/or broad lines instead of narrow

raypaths.
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Figure 1: A cross-hole tomography experiment with 31 shots and 31 receivers evenly spaced every
20 m in holes 600 m deep and 600 m apart. The central anomaly is a 60 m by 60 m square of

1200 m/s material on a background of 1000 m/s material.

ART1: Projecting Slowness Errors Along Narrow Lines

Figure 2 shows the fifth iteration in an iterative solution to the seismic tomography problem
posed in Figure 1. The solution was generated using a version of ART (Algebraic Reconstruction
Technique) modified to include refraction, developed and described by Al-Yahya in SEP-42 (and

henceforward referred to as ART1). The algorithm consists of an iterative solution of the equations
t;=> wl;; j=1,2,...961, (2)
t

where the continuous line integrals of Equation 1 have been approximated through discretization:
both of the slowness function w into 961 cells, w;, and of the raypath ! ;(w) into line segments, [;.
The method is implemented in four steps. First, an initial slowness model, @;, is guessed (for this
application the guess was the background velocity, 1000 m/s). Second, rays are traced through
the guessed slowness model, yielding estimated traveltime data, fj, along estimated raypaths, I;,

and linear equations

1
Here At; =t; — fj and Aw; = w; — ;. Third, for each source-receiver traveltime, the underde-
termined At; equation is solved by minimizing the minimax norm L% = Y ,(Aw;)®, yielding the
slowness corrections

Aw; = 7=1,2,...961. (4)
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Figure 2: ART1: the fifth iteration in an ART solution to the tomography problem posed in
Figure 1. The outermost contour corresponds to 1010 m/s. The contours increase towards a

maximum of 1040 m/s at the center in 10 m/s increments.

Note that the corrections for all the cells along a single raypath are identical and that a single
error is projected back along a single trajectory. Fourth, after slowness corrections are calculated
for each cell for all traversing raypaths, the median Aw; for each cell is selected to construct a
new slowness model guess, and the entire process is repeated.

Even though the number of measurements (961 traveltimes) equals the number of unknowns
(961 slowness cells) for the experiment of Figure 1, the cross-hole geometry limits the line integrals
through the cells and consequently the linkage between the cells; the problem is underdetermined
and the solution exhibits a loss of resolution. Distinctive, geometry-dependent artifacts are ap-

parent, particularly in the horizontal direction.

ART2: Projecting Slowness Errors Along Ellipses and Lines

The algorithm described above is based solely on first break traveltimes; it discards the bulk
of the wavefield information contained in the seismograms recorded at each receiver. In his classic
paper on migration, Hagedoorn makes an observation which suggests a method for incorporating
part of this information in the inversion process (Hagedoorn, 1954). Two figures illustrating
bandlimited wave propagation through a homogeneous medium are reproduced from his paper in
Figure 3. For the source wavelet shown in the upper part of the figure, Hagedoorn notes that:
“Analogous to the principle of Huygens-Fresnel, an energy quantum from the source S in fig. 2

[lower part of Figure 3] can contribute to the first compression received in R if its trajectory
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Fig. 1. A simple type of waveform
- from a seismic shot.
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distance: d from 500 to 10000 m.
velocity: V. ,, 1000 ,, 06000 nfsec.
frequency: n 10 ,, 100 cyclesisec.
wavelength: A=V/n 0 ,, 600 m.
width: w,, 70 ,, 2500 m.

IYig. 2. The width of a beam between shotpoint and receiver for the practical magnitudes
of distance and frequency.

Figure 3: Two figures borrowed from Hagedoorn (1954) which demonstrate that the first pulse of
a bandlimited signal propagating through a homogeneous medium is influenced by an elliptical

region separating the source and receiver.

does not exceed the minimum path by more than a half wavelength, corresponding roughly to the
distance from A to B in fig. 1 [upper part of Figure 3],” (ibid.). Thus the region influencing the first
pulse recorded for any source-receiver pair in a homogeneous medium is described by an ellipse of
width ~ v/d), where d is the source-receiver distance and A is the dominant source wavelength.
This reasoning implies that anomalous zones within a homogeneous region may be detected by
comparison of the first pulse of a cross-hole seismogram with a reference source wavelet; the
presence or absence of interference effects in the first pulse for any source-receiver pair can be
interpreted as an indication of the inhomogeneity or homogeneity of the intervening elliptical
region. (For this argument the ellipse widths are fixed at v/dA. A more general formulation of the
relation would require source deconvolution prior to examination of the seismograms; the ellipse
widths would then be made dependent on the distance between the first and second spikes on the
deconvolved traces.)

These ideas are applied to the simple cross-hole problem of Figure 1 in Figure 4. Panel (a)
describes the interaction of a 40 Hz source wavelet with the experiment’s single central velocity
anomaly, as interpreted by Hagedoorn’s model. For a source-receiver pair such as A-B, the
elliptical region influencing the first pulse is homogeneous and the model predicts the absence
of interference effects from the first recorded pulse; for a source-receiver pair such as A-C, the
elliptical region intersects the anomaly and the model predicts the presence of interference effects.

Panel (b) shows a synthetic time section generated by placing a 40 Hz source at shotpoint A of
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Figure 4: (a): The elliptical regions which influence the first pulse arriving at receivers B and
C from source A, assuming a bandlimited wavelet with a dominant frequency of 40 Hz and the
experiment of Figure 1. (b): A synthetic time section generated by placing a 40 Hz source at
shotpoint A. (c): A smoothed plot of the maximum cross correlation of the first pulse after the

first break on each trace of Panel (b) with the first pulse of the original source.
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Panel (a). Panel (c) shows a smoothed plot of the maximum cross correlation of the first pulse of
the original source with the first pulse after the first break of each trace in Panel (b). Hagedoorn’s
model predicts the data correctly; diffraction effects appear when the central anomaly impinges
on the elliptical region of wave propagation connecting the source-receiver pairs.

These relations suggest a scheme for improving the tomographic inversion of the simple exper-
iment of Figure 1, based upon the inclusion of information contained in the first pulse following
the first break. The information may be incorporated by modification of step three of the ART1
algorithm described above. When interference effects from reflections or diffractions are absent
from the first pulse—when the elliptical region is known to be uniform—slowness corrections are
projected back over an elliptical region. By linking the cells within the ellipse this step forces
homogeneity of the region in the final solution. When interference effects are present—when
the elliptical region is known to be nonuniform—slowness corrections are projected back over
the usual narrow raypath of ART1. Figure 5 shows the fifth iteration of the ART2 algorithm,
modified according to this scheme with the assumption of a 40 Hz source; slowness corrections
were redistributed along both lines and ellipses. Horizontal resolution has been improved and the
distinctive artifacts have been removed. By projecting errors back over an ellipse, the algorithm
effectively deduces absent line integrals; more cells are linked in more ways by the broad ellipses

than by the narrow raypaths.

ART3: Projecting Slowness Errors Along Broad Lines

Two factors are responsible for ART2’s success in the above example. First, because the ex-
periment was synthetic, detection of distortion in the first pulse was trivial. For real data this
operation would have been much more difficult, if not impossible. Second, the simple geome-
try permitted projection of slowness errors back along either straight ellipses, or straight and/or
curved lines. Regions influencing the first pulse after the first break for more complicated me-
dia are illustrated in Figure 6: the upper panel diagrams reflection; the lower panel diagrams
transmission through layered media. For these cases it is more difficult to determine the path for
redistribution of slowness errors, but not impossible.

Because of these difficulties, it is interesting to consider the consistent projection of slowness
errors back along broad lines instead of either narrow raypaths or combinations of narrow raypaths
and ellipses. Figure 7 shows the fifth iteration in a third version of the ART algorithm, modified
according to this scheme; error corrections were projected back along broad (120 m) raypaths for
every source-receiver pair. While the method has decreased the information in the inversion and
consequently reduced resolution in both the vertical and horizontal directions, it has successfully
removed the x-shaped artifacts which dominate Figure 2. By smoothing in a direction perpendic-

ular to the raypaths, ART3 has low-pass filtered the sharp truncations in the spatial frequency
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Figure 5: ART2: the fifth iteration in an ART solution to the tomography problem posed in
Figure 1, modified to project slowness errors back over an elliptical region when the first pulse
generated by a 40 Hz source was free of interference effects, and over a narrow raypath when the
first pulse showed interference effects. The outermost contour corresponds to a velocity of 1010

m/s. The contours increase towards the center to a maximum of 1050 m/s in 10 m/s increments.
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Figure 6: (a): The elliptical regions affecting the first pulse of a reflected wave, adapted from

Hagedoorn (1954). (b): The elliptical regions affecting the first pulse of a wave transmitted
through layered media.
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Figure 7: ART3: the fifth iteration in an ART solution to the tomography problem of Fig-
ure 1, modified to project slowness errors back along broad (120 m) raypaths between every
source-receiver pair. The outermost contour corresponds to a velocity of 1010 m/s. The contours

increase towards the center to a maximum of 1030 m/s in 10 m/s increments.

domain which probably caused the artifacts in the first place (Hanson, 1982). Significantly, this
third scheme is compatible with the idea of picking peaks instead of first breaks. Where tomo-
graphic inversion is performed on picked peak rather than first break times, the first pulse of an

event is automatically assumed to be undistorted and the intervening medium smoothly varying

around the raypath.

Summary

Because of practical limitations on experimental geometry, geophysical tomography prob-
lems are generally underdetermined; their traveltime inversions demonstrate poor resolution and
geometry-dependent artifacts. Resolution may be enhanced and artifacts removed by constrain-
ing the null space of the solution with extra information or a priori assumptions. Two methods
are described above for improving the basic iterative ART solution to the simple cross-hole prob-
lem of Figure 1. The first modification is based on Hagedoorn’s observation that the first pulse
of a bandlimited signal propagating through a homogeneous medium interacts with an elliptical
region separating source and receiver. Iterative slowness corrections are projected back over an
elliptical region when interference effects from reflections and diffractions are absent from the
first pulse—when the elliptical region is known to be uniform; the corrections are projected back

over a narrow raypath when interference effects are present—when the elliptical region is known
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to be nonuniform. This method adds information to the tomographic solution, both improving
horizontal resolution and removing artifacts. The second modification is based on recognition
of the fact that inversion artifacts arise from sharp edges in experimental geometries. Iterative
slowness corrections are consistently projected back over broadened raypaths, smoothing the in-
version result along the natural lines of the problem. This method adds a priori information to
the tomographic solution, removing artifacts at the expense of horizontal and vertical resolution.
The ability of the two modifications to improve inversion results for geometries more complicated

than Figure 1 remains to be studied.
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