Tomographic determination of interval velocities from
picked seismic data—theory and synthetic results

Chuck Sword

ABSTRACT

The method of Controlled Directional Reception (CDR) can be used to determine travel times
and ray parameters of waves transmitted from a given shot and received at a given geophone
(Riabinkin et al., 1962; Sword, 1984). These ray and travel-time parameters (collectively known
as CDR parameters) are obtained from conventional seismic data through an automated picking
procedure, and can be inverted tomographically to give the velocity structure of the medium.
No assumptions are made as to the shape or continuity of the reflecting horizons. The inversion

process has been successfully tested on synthetic data from a laterally heterogeneous model with

curved, dipping reflectors.

INTRODUCTION

In a recent paper Bishop et al. (1985) discuss the determination of interval velocities, and they
give a concise summary of various methods that have been used in the past. They then describe a
tomographic approach, where picked travel-time data are inverted in order to determine interval
velocities and depths of reflecting horizons.

My present paper also describes a tomographic approach. One major difference between my
approach and that of Bishop et al. is that rather than use travel time picks from interpreted
horizons, my approach utilizes travel times and ray parameters that can be picked automatically
from common-shot and common-geophone gathers (the automated picking of such parameters is
the basis of the method of Controlled Directional Reception (CDR), which has been developed
over the last several decades in the Soviet Union). This approach is similar to those previously
proposed by Harlan and Burridge (1983) and by Gray and Golden (1983). Only interval velocities
are inverted for, not depths of reflectors. Because of the differences between this method and that
of Bishop et al., a somewhat different approach to the inversion problem is necessary.

Inverse problems are usually formulated in terms of a search for the minimum of an objective
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function, where the objective function describes the mismatch between the real data and the data
predicted by a model. Typically, tomographic velocity inversions seek to minimize the discrepancy
between observed and predicted travel times (see, for instance, Worthington (1984)). I have chosen
a somewhat unusual objective function. Rather than trying to minimize the error in predicted
versus measured travel time, the method that I present here seeks to minimize the horizontal
distance between the endpoints of each pair of downgoing and upcoming rays.

Some tomographic methods operate under the assumption that the rays travel in straight
lines; I, like Bishop et al. (1985), have chosen to allow curvature of rays. Often it is possible to
use Fermat’s principle to justify using the same raypaths over several iterations, even though the
velocity may have changed (Toldi, 1985); my objective function is such that Fermat’s principle
cannot be invoked.

Once an objective function has been chosen, a procedure must be defined that will minimize
this function. I use a technique known as the Gauss-Newton method (Gill et al., 1981; Levin,
1985), which works as follows. An initial velocity model is chosen, and the rays that correspond to
the various travel-time and ray-parameter picks are traced through this model in order to find the
value of the objective function. The results are used to form a linearized least-squares inversion
problem. This least-squares problem can be solved by the conjugate-gradient method (e.g., with
the subroutine LSQR (Paige and Saunders, 1982)); the solution is used to update the velocity
model. Rays are then traced in the new velocity model, and the sequence of iterations continues.

This inversion scheme has been tested on synthetic data. The picked parameters were gen-
erated directly by the modeling programs, rather than being picked from synthetic field profiles.
The tests were successful, although with one of the synthetic data sets there was some difficulty
in determining the interval velocities in the lower part of the model.

There are several advantages to the tomographic method proposed in the present paper. No
assumptions are made about the shape or continuity of the reflectors, and data obtained from
point diffractors will work as well as data from flat, dipping, curved, or faulted horizons. The
picking is automated, so there is no need to interpret horizons and digitize travel times manually.
The time and ray-parameter picks should occupy much less space than the original data set,
producing savings in both processing time and data storage.

There are also some disadvantages. In contrast to the method proposed by Bishop et al., the
present method is not based on the implicit assumption that reflectors are continuous; as a result,
a certain amount of robustness is lost (the “focusing” of horizons is not used as a criterion in the
inversion). Since the data are picked automatically, the present method may be adversely affected
by multiples and other coherent noise that a human interpreter could easily exclude. In contrast
to Fowler’s proposed method (1985), which is based to some extent on Toldi’s work (1985), the

present method expends a great deal of computer time picking reflections and tracing rays. There
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Figure 1: Determining ray parameters. Figure la shows how a short-base common-shot gather
might be collected in the field. Figure 1b shows a possible outcome of this seismic experiment
(notice that the horizontal coordinate in this Figure has its origin at the location zg). Figure lc
shows the result of slant stacking this data; from the slant-stack section it is possible to determine
the ray parameter p, (defined as At/Az,) and travel time ¢.

is also the general problem inherent in any method where rays are traced—rays are fickle, and the
smallest changes in velocity can cause them to shoot off in unpredictable directions. Solutions to

the wave equation may be much more stable in this regard.

SUMMARY OF CDR (CONTROLLED DIRECTIONAL RECEPTION)

The method of Controlled Directional Reception (CDR) was invented in the United States,
but reached its highest development in the Soviet Union (Riabinkin et al., 1962; Hermont, 1979;
Sword, 1984). The CDR approach might best be summarized by the phrase, “slant stacks over
short bases”. As illustrated in Figure 1, a portion of a common-shot or common-geophone gather
is transformed into a slant-stack section. The peaks of the slant stack are picked, yielding the
travel times and ray parameters of the various events in the section. In practice, it is preferable
to use a semblance-weighted slant stack (Stoffa et al., 1981; Kong et al., 1985), as the peaks are
sharper and more easily picked, and aliased noise (such as ground roll) is better attenuated.

Figure 2 shows a typical common-shot gather (a field profile). A portion of this gather was

slant stacked and semblance weighted, with the result shown in Figure 3a. The peaks picked
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Figure 2: A common-shotpoint gather, courtesy of an anonymous sponsor. Offsets 1400-2000
(denoted by the heavy line at the bottom of the figure) will be used to produce Figure 3. The

S35
J?é}é’ LRy

PS5,

ez

SEdeeepia iy

RIRD ISR 2L i

s‘i"% ii%sﬁ??i?’iﬁ?
5T S

P

SRR
i

LT
By SN a s Tt e

&Y %ﬂ%&ﬁ?&%ﬁ%’éﬁz =

3 SR It

IHHIINT
S
R

BN

ESAIRES

}? i z’_FfJJEQ?.@ = ;%EQ&SE‘»% L

SRR

e

RIRIGEHINS
%)853@%3?3?

33Ssiecsid
PR,

SRR
RS

?3%554{

LOBIFE

RIS
IHONIG

i ’{%j%zﬂiéiwz

Ié') iﬁ?f’ﬁ
IRK %5:5‘1??.&{

SN AN

SRR,

i

)2’ LY &3{%)’2'9

2204
i oteny Xéi &‘35

b3S
fghiells %K(ﬁ%)‘ii’&fsii%ii i%}i % ke

A

'™
ATk
%
’*’%
V\-/‘

Vo]

=
e

Y
NS AN

i%?i S S R

?3.?3&3){2%}

15 BN

LS %?%&(Q&H?

»”“’i Pshnr b

AT

SRR

B0 2
$ ’ﬁ%ﬁ&'}.’ﬁé{ i

YRESRY

Pz?,rp AR TRk
Er QBRI

oY Reis

=F KR e

az
P
WHWWQ'?

SRR DS
?éﬁ%?ié#i&m B (KSR

594 A1 !}&(“g%é‘
P FTONEE

—

entire gather will be used to illustrate the automated picking of CDR parameters.
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Figure 3: Semblance slant stack and automatic picking. Offsets 1400-2000 in Figure 2 were slant

stacked and semblance weighted to produce the data illustrated in Figure 3a. Figure 3b shows
the peaks that were picked by an automatic picking algorithm.
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Figure 4: A synthetic time section. The data in Figure 2 were slant stacked and automatically
picked, as illustrated in Figure 3. The picks were used to reconstruct the original data, with the
results shown here. The picking algorithm managed to find the main events, but it has picked up
some noise as well.
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Figure 5: A stacking chart showing the “summation bases” that might be used to determine p,
and p, at a particular z, and z,. The heavy horizontal line denotes a short-base common-shot
gather, whose traces can be slant stacked and picked in order to determine p;. The heavy vertical
line denotes a short-base common-geophone gather, whose traces can be slant stacked and picked
in order to determine p,.

by a simple-minded automatic picking algorithm are shown in Figure 3b (the picking algorithm
is loosely based on ones described by Rapoport (1977)). The entire gather from Figure 2 was
processed in this manner: seven adjacent traces were slant stacked, their peaks were picked, the
base of summation was shifted by one trace, and the process was repeated. The use of a rolling
slant stack (Ottolini, 1983) made the stacking program fairly efficient. Once the peaks were
picked, their corresponding ray parameters, travel times, and average shot-geophone distances
were stored. These stored parameters were then used to create a synthetic time section: each pick
was interpreted as representing a short “dip bar” on the original time section, and a corresponding
dip bar was drawn on the synthetic time section. The synthetic time section is shown in Figure 4;
it agrees fairly well with the original time section, and demonstrates that the automatic picking
algorithm was successful in finding the major events. Unfortunately, the algorithm was also
successful at extracting non-existent events from noise. Clearly, more work remains to be done.
Once a portion of a particular common-shot gather has been picked (the portion representing
data collected near a particular geophone), the corresponding portion of the associated common-

geophone section can be picked (see Figure 5). The picked parameters can be combined to give
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travel times, downgoing ray parameters, and upgoing ray parameters of all waves that were
produced by that particular shot and that arrived at that particular geophone. This correlation
process can be carried out for all shot-geophone pairs, yielding a fairly substantial number of
picked parameters. These picked parameters are the input data for the inversion processes that
will be described below.

The input data for the inversion process consist of many sets of ¢, p, and p, picks, where t
represents the observed travel time, and p, and p, represent the downgoing and upcoming ray
parameters, of a particular wave. Each set of p,, p,, and t has associated with it a value of z,,
the position of the shot where p, was measured, and z,, the position of the geophone where Py
was measured. Of these five parameters, =, and x, (the shot and geophone position) are of course
the most reliable, and ¢ is almost as reliable. The remaining parameters, p, and p,, may not be
especially accurate. If the velocity of the medium were assumed to be constant, then these five

parameters, if accurate, would be sufficient to determine that velocity (Sword, 1984).

OBJECTIVE FUNCTIONS

A possible objective function

Given the five picked parameters and a proposed velocity model, there are several differ-
ent objective functions that could be used to test how well the model fits the data. The most
straightforward one is as follows: trace rays, with ray parameters p, and p,, from points z, and
z, respectively. Keep going until the rays meet. Calculate the total predicted travel time. The
objective function consists of the squared difference between the predicted and observed travel
times.

This straightforward method is not the one that I chose to use. Figure 6 illustrates a couple
of the reasons why. Suppose that the velocity model happens to be correct. Since the model is
correct, the objective function should be at a minimum. Suppose also that z, and z, are near each
other, and that there are slight errors in p, and p,. The solid line in Figure 6 shows the actual
raypath in the medium, and the dotted line shows the raypath that is predicted on the basis of
the erroneous measurements of p, and p,. The measured travel time is based on the travel time
along the solid line, while the predicted travel time is based on the travel time along the dotted
line. So as a result of a small error in measuring the ray parameters, there is a large error in the
predicted travel time, which in turn incorrectly suggests that there is a large error in the velocity
model. The first problem, then, is that small ray-parameter errors (and these are unavoidable)
can lead to large errors in velocity measurement. The second problem has to do with the way
the velocity model is updated. Typically in tomographic problems the velocity will be updated

along raypaths where a velocity error has been detected. This means that in the example depicted
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Depth

Reflector

Figure 6: The result of small errors in p, and p,. When z, and z, are near each other, small
errors in the measurement of the ray parameters can lead to large errors in the predicted travel
time. Here the solid line shows the actual raypath in the medium, while the dotted line shows
the raypath computed on the basis of slightly erroneous ray-parameter measurements.

in Figure 6, the velocity will be updated not only from the surface to the reflector depth, as it
should be, but also from the reflector all the way down to the point where the two erroneous
rays intersect. It appears, then, that travel-time error is not a good measurement to use in the
objective function.

There is yet another reason for not trying to minimize errors in travel time. In tomographic
inversion problems, one does not find an objective function that minimizes, for instance, the error
in z,, the shot position—the shot position is assumed to be known exactly. Instead, one tries to
minimize the error in another parameter (¢, perhaps) that is more likely to be erroneous. In a
similar fashion, when the five-parameter CDR data sets described in this paper are being used,
there is no sense in trying to minimize the error in the parameters z,, z,, or t, which are assumed
to be known relatively precisely. The objective function should be based on errors in the ray
parameters p, and p,, not on errors in the measured versus the predicted travel times.

There are difficulties, however, in basing an objective function directly on errors in the ray
parameters. I won’t go into details, but it should not be too difficult to see that to measure

these errors, an excessive amount of ray tracing would have to be performed. Since ¢t would be
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Figure 7: A better objective function. Two rays are traced down to a depth 2., the depth where
their combined computed travel time equals the measured (picked) travel time. The distance
between the rays at this depth is defined to be . This objective function is reasonably stable
in the presence of errors in the measured ray parameters.

assumed to be an exact parameter, rays would have to be traced and retraced until a pair of rays
were found that intersected at a point where the travel time predicted by the ray tracing exactly

matched the measured travel time.

The x-error objective function

Now I will describe the objective function I have chosen to use. This objective function is
not overly sensitive to ray-parameter errors, nor is it expensive to compute.

Suppose that the upgoing and downgoing rays have both been traced back to some depth
z in the velocity model (see Figure 7). Since the starting positions and the take-off angles (ray
parameters) of both rays are known, the raypaths are unique. The predicted travel time at depth
z can be defined as the computed travel time along the downgoing ray plus the computed travel
time along the upgoing ray, as measured at depth 2. Then for each pair of rays one can determine
a depth 2., the depth where the predicted travel time equals the observed travel time. Once
the value of 2z, has been determined, the horizontal distance between the two rays at that depth
can be measured; this distance is defined as z¢,. The objective function to be minimized is
z2 .. The value of Zer is clearly zero if the ray parameters and travel time have been measured

correctly and if the velocity model has been chosen correctly. If the ray parameters p, and p,
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have been measured incorrectly, ze;; will be non-zero, but it won’t vary wildly, even when the
shot-geophone distance is small (compare this behavior to that of the objective function based
on travel-time errors). And the rays need be computed only once per iteration; no expensive
two-point ray-tracing algorithm is necessary.

In the problem I am solving, the velocity model is defined at regularly spaced grid points. In

Appendix A I give the details of how ray tracing may be carried out in such a model.

MINIMIZING THE OBJECTIVE FUNCTION

Once an objective function has been defined, it is necessary to devise a method of minimizing
it. To begin with, let us make some definitions.

First, a definition of the model: the model is defined to consist of N boxes. The velocity in
box i is v; (there may be a horizontal velocity gradient in each box, as well; see Appendix A).
The vector v is made up of all N of the velocity terms v;.

Next, a definition of the data: the data consist of M sets of picked parameters; the jth set
of parameters contains Ps(i)> Pa(s)» Ts(5)s Za(j)» and ti;)-

Finally, a definition of the objective function: for the jth set of picked parameters, there is
an associated error term Terr(;)- This term is found by ray-tracing methods as described in the
previous section, it is clearly a function of v, and it is conveniently written as xen(]-)(v). The
vector composed of all M of the error terms can be written as Xer;. The objective function ®,

then, can be written as

B(V) = D Terr() (V) = [ere (V)1 (1)

It turns out to be necessary to include damping factors, which can prevent the velocity from
varying too wildly in each iteration. Since the damping should be based on the overall velocity
model, rather than on the change in velocity at a single iteration step (Tarantola and Valette,
1982), the damping factors can be incorporated into the objective function. As a result, the

objective function becomes

@(V)Ez:zzrr(j)—}—)\iz (%ﬂ)2+,\22 (%)2, (2)
7 ; z : oz
where 1 is the index over model velocities, j is the index over picked parameters, and A, and ),
are the horizontal and vertical damping terms, respectively.

The problem that is to be solved is now easily stated: find the value of v that minimizes
®(v). This is a non-linear minimization problem; out of the many possible ways to solve such
problems (Gill et al., 1981), I have chosen to use a modified Gauss-Newton method. Bishop et al.

use a similar iterative method.
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Let v(¥) be the current velocity model, the result of the kth iteration. The desired new

velocity model is v(**1) | which is to be found according to the formula
vk+) = y(]) 4 Ay, (3)
In the standard Gauss-Newton method, Av is found by solving the least-squares system
AW AV ~ —x(), (4)

(k) _

where Xt = xerr(v(")), A(k) is the Fréchet matrix derived from xgg, and Av is the difference

between the current velocity model and the desired model. The Fréchet matrix is defined according

Oerrfs
(k) = [ ZTerr(y)
459 = () ©)

This matrix can be obtained, for instance, through finite differencing methods: perturb each

to the formula

velocity term v; slightly, and see how all the components of Xerr vary in response. In practice,
this method as described is too expensive; alternative methods are described in Appendix B (for
laterally homogeneous velocity structures) and in Appendix C (for fully heterogeneous velocity
structures).

There are a few details that must be added to this general description. Since the objective
function contains a damping term (see equation 2), this term must be incorporated into the

iterations. Define a differencing matrix D such that

v1 3
U1
D| : |~ (222, A
~ : ( oz z

VN

duy

v, auN)T
Oz

ey Ag—/—
az’ ) 2

y Az £y

(6)

The terms A; and A, have the same meaning as in equation (2). Now the least-squares system

no longer takes the form of equation (4), but instead is written as

A —Xerr
(Q)Av“(—yv)' &

As long as A; and A, are non-zero, equation (7) represents a sparse over-determined system of
linear equations, even if M is less than N (as is the case with my synthetic examples). Equation

(7) can be solved numerically by the conjugate gradient algorithm LSQR (Paige and Saunders,
1982).

An additional complication is that equation (3) should actually be written in the form
vt = 3(B) 4 AAv, (8)

where X is the scalar which minimizes ®(v(¥) + AAv). If v(¥) is not too far from the value of v

which minimizes ®, A will be close to 1.0. In other cases, however, setting A equal to 1.0 may not
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produce good results. In practice, it is very expensive to find A exactly, since ray tracing must be
performed every time ® is calculated. It is relatively cheap, however, to find an approximate value
of X, if ®(v(¥), (v{k+17)), é("), and é(""'l?) are known (here v(¥*t17) is a trial value for v(k+1),
found by setting A equal to 1 in equation (8), and é(k“?) is the corresponding Jacobian matrix).
Without going into details, I will note that given such information, an approximate value of \
can be found through the cubic fit line-search method (Luenberger, 1984, pp. 205-206).

Appendix B contains the gruesome details of how the Fréchet matrix A , defined in equation
(5), is calculated when the velocity model is laterally homogeneous. One interesting result is that
A;; in general depends only on Ps(5)> Pg(j)> Vi and vy(;), where v1(;) 1s the velocity at layer I(7),
the layer containing the endpoints of the jth pair of rays. This result helps make the problem a
little bit more linear, since it means that A;; does not depend on v; if I # (i or I(7)).

Finding the Fréchet matrix is a more difficult task when v is a function of both z and
z. Besides the expected difficulties of computing derivatives in a layer containing a horizontal
gradient, there is an additional problem. It has just been noted that in laterally homogeneous
media, A;; depends only on v; and vr(5), Where T (7) is the index of the layer containing the
endpoints of the jth ray. When the medium is laterally inhomogeneous, however, A;j depends on
the velocities in all of the boxes that the ray passes through on its way from the ith box to the
endpoint. As a consequence, calculating A;; is more complicated than for the flat-layer case. The

details of how these calculations are carried out may be found in Appendix C.

RESULTS OF TESTS ON SYNTHETIC DATA

I have tested the CDR tomographic inversion method on synthetic data, including data from
a vertically stratified (laterally homogeneous) model and from a fully inhomogeneous model. In
all cases I obtained the picked parameters (z,, z4, ps, pg, t) directly from the modeling program,
so I did not use the picking procedures described in the section on the CDR method. No noise

was added to the synthetic data.

Synthetic data from a layered medium
The first two synthetic examples are from vertically stratified models.

The first model consisted of five layers, with a constant velocity within each layer. Figure 8
shows the raypaths that were generated during the modeling. The surface-position parameters,
z, and z,, were rather arbitrary; they depended only on where the rays happened to intersect the
surface. A total of 25 sets of CDR parameters were generated.

These synthetic data were used as input to the inversion algorithm described in the previous
section. A vertically-stratified model was used in the inversion, with layers a distance of Az = .01

apart; the total depth of the model was 1.0. The velocity boxes were each as wide as the model, so
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Figure 8: Generation of synthetic data. This model consists of 5 layers; velocity is constant within
each layer. The third layer from the top is a low velocity zone. There is no vertical exaggeration.
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Figure 9: Iterative inversion. The synthetic data generated by the rays in Figure 8 were inverted
by the method described in this paper. The results of the first 6 iterations are shown here; the
result of the 6th iteration is drawn with a thicker line. The dotted line shows the correct velocity

model.
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Figure 10: Generation of synthetic data. The velocity in the model varies linearly from a value
of 1.0 at the top (2 = 0.) to a value of 2.5 at the bottom (2 = 1.). There are five reflecting
boundaries within this model (although there are no sharp velocity changes), at the indicated
depths. There is no vertical exaggeration.

that there was only one box per layer. The units used are unimportant, but the reader is free to
choose any set of units that seems reasonable (distance in tens of kilometers and time in seconds,
for instance). A vertical damping coefficient of A\, = .0015 was used, and the initial velocity model
was a constant velocity everywhere of 1.0. Figure 9 shows the results of the first 6 iterations on a
plot of velocity versus depth. The results are very encouraging. The undamped inversion problem
would be underdetermined, with only 25 sets of picked parameters and 100 layers in the model,
so the damping term played an important role.

The second velocity model consisted of a linear vertical velocity gradient, with five embedded
reflectors. Again, a vertically stratified model was used in the inversion, with layers a distance of
Az = .01 apart, and a total model depth of 1.0. A vertical damping coefficient of A, = .001 was
used, and the initial velocity model was a constant velocity of 1.0. Figure 10 shows the raypaths
generated during the modeling; the output consisted of 24 sets of CDR parameters.

Figure 11 shows the results of the inversion. The fit to the input model is good down to a
depth of .7. There were no reflectors located below that depth, so deeper velocities could not be

determined.
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Figure 11: Iterative inversion. The picked parameters associated with the rays shown in Figure
10 were inverted, with the results shown here. The correct velocity model is shown by a dotted
line, while the solid lines show the results of the first 7 iterations. The result of the Tth iteration
is drawn with a thicker line.

Synthetic data from a laterally heterogeneous model

While tomographically inverting data from a vertically stratified medium is an interesting
exercise, it isn’t necessarily very practical, since there are so many cheaper ways of determining
the velocity structure in such a medium. More interesting is to invert data from a medium that is
both vertically and laterally inhomogeneous. I have chosen to invert synthetic data from a model
similar to that used by Cerveny as a test of his ray-tracing program (see the title page of SEP-28).
This model is shown in Figure 12, as are all the raypaths from a typical shot.

I used the ray-tracing program SEIS83 (éerven;’( and P3en&ik, 1984) to generate the picked
parameters. There were 19 geophones and 19 shots. It might be preferable to say that there
were 19 shot arrays and 19 geophone arrays, since in practice the ray parameters p, and Py can
be determined only by analyzing the data from arrays of adjacent shots and geophone. Any rays
that arrived at the surface at too shallow an angle (more than 63.5 degrees from the vertical)
were rejected. The output of the modeling program consisted of approximately 1400 sets of picked
parameters.

The picked parameters were used as the input to my tomographic inversion program. The
model used in the inversion consisted of a grid 10 km wide and 5.5 km deep, with a horizontal

and vertical spacing of .05 km between adjacent grid points. Thus, there were 22,000 grid points
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Figure 12: Synthetic model. This model was used to generate synthetic picked parameters. Note
the depth of the deepest reflector. Shown are all the rays from a single shot; some of these rays
were not used in the subsequent inversion, since they arrived at too shallow an angle. The shots
and geophones were distributed along the surface, at intervals of .5 km, starting at the .5 km
mark and going to the 9.5 km mark. Velocities are in km/sec.

in the inversion model. I tried two different initial velocity models (first guesses). The first one
(which I will refer to as Model 3) varied linearly from 2.0 km/sec at the surface to 3.0 km/sec at
the bottom of the model, while the second (which I will refer to as Model 4) varied linearly from
2.0 km/sec at the surface to 4.0 km/sec at the bottom. Note that although the bottom of the
velocity model is 5.5 km deep, subsequent figures show velocities only to a depth of 5.0 km.

The results of inverting with Model 3 as an initial model are shown in Figure 13 (this Figure
shows the results of the 18th iteration); the damping factors were A, = .1 and A, = .05. Agreement
is good down to a depth of about 3 km, but below that depth the interval velocities are not very
accurate. The problem is simply that these deeper velocities are not very strongly constrained by
the data.

Figure 14 shows the results of inverting with Model 4 as an initial model (shown in this
Figure are the results of the 15th iteration); the damping factors were A\; = .1 and ), = .025.
Note that this value of A, differs from the value used in the generation of Figure 13. Again, there

is good agreement in the upper levels of the model, and now there is better agreement in the
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Figure 13: Inversion results (Model 3). This Figure shows the results of inverting the picked
parameters from Figure 12, with Model 3 (see text) as the initial guess. The original model is
overlaid for comparison; velocities are in km/sec.
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Figure 14: Inversion results (Model 4). This Figure shows the results of inverting the picked
parameters from Figure 12, with Model 4 (see text) as the initial guess. The original model is

overlaid for comparison; velocities are in km/sec.
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shot ray geo ray

Figure 15: Basis of CDR migration. Given a set of picked parameters and a velocity structure, it
is possible to draw a dip bar to represent a portion of the reflecting horizon that generated the
rays. This dip bar is drawn at depth 2., halfway between the endpoints of the shot and geophone

rays. The dip of the dip bar corresponds to the dip of the reflector that would have generated
those two rays.

lower levels as well. These two examples, when taken together, show how the final results can
vary due to differences in the starting models. This sort of variability is not desirable, of course.

Once the velocity model were found by inversion, I performed CDR migration (Sword, 1984)
on the picked parameters. In essence, I traced the rays corresponding to each set of picked
parameters down to the appropriate depth z,, and drew a dip bar at the midpoint between the
endpoints of the shot and geophone rays (see Figure 15). The angle of the dip bar was based
on the angle from the vertical of the two rays. In Figures 16 and 17 I show the the results of
performing this process on the the velocity models shown in Figures 13 and 14, respectively. The
width of each dip bar is equal to (zerr/2.)x 1.0 km, so these Figures give some idea of how well the
inversion process minimized Zo... Note that both velocity models were about equally successful
in performing this minimization, which shows that the z.. objective function does not act as a
strong constraint on interval velocities in the lower part of the model.

Most reflection seismologists (other than old-timers and adherents of CDR) are unaccustomed
to seeing sections composed of dip bars, so I have rasterized and tapered the dip bars, and
performed some time filtering, with the results shown in Figures 18 and 19. The widths of the

dip bars are now based on travel times of the rays, rather than on z,.
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Figure 16: Results of CDR migration (Model 3). Based on the picked parameters generated from
the model in Figure 12, and on the velocity structure shown in Figure 13, dip bars have been
drawn according to the technique illustrated in Figure 15. The original model is overlaid for
comparison.
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Figure 17: Results of CDR migration (Model 4). Based on the picked parameters generated from
the model in Figure 12, and on the velocity structure shown in Figure 14, dip bars have been
drawn according to the technique illustrated in Figure 15. The original model is overlaid for
comparison.
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Figure 18: Filtered dip bars. The dip bars shown in Figure 186, after rasterization and filtering.
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Figure 19: Filtered dip bars. The dip bars shown in Figure 17, after rasterization and filtering.
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In this section, then, I have taken data from a synthetic model (Figure 12), inverted the data
to find the velocity structure (Figure 14), and used this velocity structure to perform a pre-stack
CDR migration on the data (Figure 19). Each velocity inversion typically required about 200
minutes of CPU time on the Convex C-1 (10 to 12 minutes per iteration), and the subsequent

CDR pre-stack migration required less than 5 minutes.

DIRECTIONS OF FURTHER WORK

My results look promising so far, but there is more work to be done. Below I give some ideas

that I should pursue.

Tests on real data

So far I have tested my inversion on noise-free synthetic data. I did not perform CDR
analysis on the data in order to obtain the picked parameters; the modeling programs gave me
these parameters directly. The inversion techniques should be tested on picked real data, or at
least on noisy synthetic data. I should begin to think about how to discriminate against multiples

and other forms of coherent noise.

Focusing of reflector images

The lower layers in Figures 16 and 17 are not very well focused. This is not too surprising;
my inversion technique looks only at individual sets of picked parameters, without taking into
account the possibility that several of these sets may have come from the same location of the
same reflecting horizon. If I can come up with an objective function that measures the degree of
focusing in my CDR migrated data, and if I can find a corresponding Fréchet matrix that relates
the degree of focusing to changes in the velocity model, then perhaps I will have an inversion
method that is better constrained than the present method. A better-constrained method might

result in velocity models that are more accurate in their lower part.

Converted waves

Once a velocity model has been found that fits the PP reflected data, converted-wave data
(from two-component geophones) can in principle be used to construct an S-wave velocity model.
Converted wave data cannot be inverted by my method to give the P-wave and S-wave velocity
fields simultaneously, but once one of these fields is found by using PP or SS reflection data, the

converted-wave data can, in principle, be used to determine the other.
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CONCLUSIONS

CDR tomographic inversion appears to be a useful method of determining interval veloci-
ties. I have demonstrated an algorithm that picks CDR parameters (ps, Py, Ts, T4, and t) from
conventionally recorded seismic data. I have shown that CDR tomographic inversion can invert
noise-free synthetic data sets, and the results look promising, although the velocity in the lower

part of the model is not as well determined as I would like.

IN MEMORIAM

Lev Aleksandrovich Riabinkin began his work in geophysics in 1930, and in 1934 participated
in the first reflection seismology experiments carried out in the USSR. He initiated his research on
the method of Controlled Directional Reception (CDR) in 1939, and in subsequent years developed
1t into a practical tool that was (and still is) widely used by Soviet exploration geophysicists. His
text on the CDR method (Riabinkin et al., 1962) is the standard work in the field. He was always
careful to point out that the basic ideas underlying CDR were first thought of by an American,
Frank Rieber, but it is clear to the outside observer that Dr. Riabinkin deserves full credit for
the subsequent development and application of CDR.

Lev Aleksandrovich Riabinkin was not only a leading researcher in Soviet reflection seis-
mology, he was also a respected teacher. During his tenure as Chairman, the Field Geophysics
Department of the Gubkin Institute graduated more than a thousand students, and two of his
former graduate students are now themselves Department Chairmen at the Gubkin Institute.

As for his personal qualities, I will note only that Dr. Riabinkin was one of those rare
individuals who truly embodied the term “a gentleman and a scholar”. I consider myself fortunate
that I was able to work for several months in his research group, and I, like all who knew him,

shall miss him.
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APPENDIX A

RAY TRACING IN A GRIDDED VELOCITY FIELD

My inversion programs attempt to find the velocity field that best fits the picked seismic
data. This velocity field can be expressed in the form of a grid, but the question then arises of
how to trace rays through this grid. Here I present the methods that were used in producing the
figures that appear in this paper.

Ray tracing in a laterally homogeneous medium

Ray tracing in a laterally homogeneous medium is relatively easy. If p is the ray parameter
and z is depth, then

sin8(z) = pv(2), (A-1)
where 8(2) is the angle, measured from the vertical, of the ray at depth z, and v(z) is the velocity
of the medium. The ray parameter p is constant in a horizontally layered medium. If a particular
layer has a thickness Az, then the ray will travel within that layer a horizontal distance (defined
as Az) of

Az = Aztanf(z). (A-2)

Similarly, travel time (At) through that layer is

Az

At= v(z)cosf(z)

(A-3)

It is assumed that velocity v (and thus 6 as well) remains constant over the distance Az. These
three equations, plus some well-known trig identities (cos§ = V1 — sin 9, for instance) are suffi-

cient for finding e, given a velocity model and the parameters z,, z,, ps, py, and t.

Ray tracing in a laterally heterogeneous medium

When velocity varies only vertically, so that v = v(2), it is possible to discretize the velocity
model in terms of layers. However, when velocity varies horizontally as well, I have found it
preferable to discretize the model into boxes, allowing a horizontal velocity gradient to exist
within each box. That is, if v; is the velocity associated with a particular box, a; is the value of

the associated velocity gradient, and z; is the horizontal position of the center of the box, then
v(z,2) = v + ai(z — ;) (A-4)

within the box. The values of a; are chosen so as to make v(z, 2) a continuous (but not continuously

differentiable) function in z, even at the boundaries between horizontally adjacent boxes. Note,
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however, that v(z,2) will not be a continuous function in z, just as it was not a continuous
function in 2 in the horizontally layered case.
Ray tracing is, of course, more complicated in the presence of a horizontal gradient. Suppose
a ray, with ray parameter po, crosses into a new box at £ = 0, z = 0. Let the velocity at that point
be vg, let the velocity within the box be described by the formula vo + az, and define k = —a/vo.
Then
sin 8 = vopy, (A-5)

where 6 is the angle of the ray from the vertical immediately after it has entered the box. Suppose
the ray emerges from the box at the point z = Az, z = Az, and that just before it emerges, it
has an angle from the vertical of § + Af. Then the following two formulas (adapted from Bishop
et al.) hold:

cos(f + Af) = (1 — kAzx) cos¥, (A-6)
and

sin(@ + Af) =sin§ + kAzcos¥. (A-7)

Once sin @ has been determined from equation (A-5), cosf may be obtained from a well-
known trig identity, and Az is known (it is the thickness of the layer, if the ray travels all the
way from the top of the layer to the bottom). Then sin(f + Af) may be obtained from equation
(A-7), cos(d + AB) obtained by a trig identity, and equation (A-6) solved to yield

Az:l(l_w),
k cos f

(A-8)
Note that when k is close to zero, equation (A-2) should be used in place of this equation. If Az
is known, and Az is the unknown quantity (this could happen if the ray intersects the vertical
boundary between two horizontally adjacent boxes), equations (A-6) and (A-7) can be solved to
yield a similar formula for Az as a function of Az. I will not give it here.

Another important parameter that must be determined is p;, the ray parameter at the point
of emergence. It is easily shown that sin(6+ Af) = (vo+aAzx)p1, and this equation, in conjunction

with equation (A-6) and the definition of k, can be solved to yield

cos @

p1= tan(f + A#9). (A-9)

vo
Since velocity discontinuities occur only with changes in 2 (recall that the gradients a; are chosen
so as to make this statement true), p; remains unchanged as the ray crosses the interface into the
next box, and it can be used as the input ray parameter, po, when the ray is traced through this
next box.
It is worth noting that nowhere, so far, has it been necessary to evaluate a transcendental

function. That is, the ray tracing can be carried out without the computer ever needing to evaluate
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a sine, cosine, arcsine, or arccosine function. The only function (besides the four basic arithmetic
functions) that needs to be called by this ray tracing program is the square root function (to solve
such identities as sin% 8 + cos? 8§ = 1). There is a single exception: the program needs to call the
logarithm function to determine one necessary parameter.
This final parameter is At, the amount of time it take the ray to travel through a particular
box. This quantity can be determined from the integral
At = / ds (A-10)

where s represents the path that the ray follows within the box. After a fair amount of algebra,
this integral can be transformed into a more useful formula:

1 (c050(1+Sin(9+A9))) .

At= —
kv %8  Cos(d + A8) (1 1 5in 6)

(A-11)

When k is close to zero, it is preferable to use equation (A-3).
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APPENDIX B

DETERMINING THE FRECHET MATRIX WHEN v = v(2)

Recall from equation (5) that é", the Fréchet matrix at the kth iteration, is defined according

OZerr(s
kE — err(j) _
AU - ( Jdv; )v:v" . (B 1)

Some more definitions are now necessary: Az; is the vertical distance that the Jth ray travels

to the formula

in the ith layer (here, as in later definitions, the j subscript has been omitted for the sake of
clarity); Az; is the horizontal distance that this ray travels in the ith layer; and At; is the travel

time of this ray within the layer. Then it is possible to write:

axerr(j) _ axerr(j) . dAz; n afl:err(j) . dAt;
av; JAzx; dv; AL dv;

Now the problem is reduced to one of finding the value of each term.

(B-2)

First, however, there is a point that needs to be clarified. Recall that Az; has just been
defined to be the horizontal distance traveled by the jth ray in the ith layer. This definition
ignores the fact that two rays are being traced simultaneously in order to find Terr(j), and that

Terr(;) 1S thus dependent on both of these rays. That is,

Terr = Tge — Lge, (B'3)

where z,, is the horizontal position of the endpoint of the jth downgoing (shot) ray and Tge is
the horizontal position of the endpoint of the jth upgoing (seophone) ray (the endpoint of a ray
is defined to be the point where the ray intersects the line z = 2., with 2, defined as the depth
where the combined computed travel times of the two rays equals the measured travel time). In
practice, although a velocity change in a given layer will produce changes in both rays, it is most
convenient to consider the effect of the change on only one of the rays at a time, and sum the
results later into A;;. This is the approach that will be used in this Appendix.

The first term in equation (B-2) is easily determined, after a moment of thought. Since v is
a function only of 2, z,. (or z,) varies exactly the same amount as Az; varies, independently of
the velocity structure of the model. As a consequence of this result and of equation (B-3), and

depending on which ray is under consideration,

aax—zragl = -1 (downgoing); otherwise, %:EZ;# =1 (upgoing). (B-4)

The second term in equation (B-2) can be determined by differentiating equation (A-2). The
result is:

e (®5)

SEP-48



Sword 29 Tomographic inversion of picked data

where 8; is the angle of the ray in layer ¢ as measured from the vertical.

The third term in equation (B-2) is somewhat more complicated to derive. To begin with,

af":err(j) . dZerr . dz,

OAt; ~ dz, dAt’ (B-6)
where z, is the depth of the endpoints of the jth pair of rays. From equation (B-3),
dTerr  dzge dz,
dz,  dz, dz,’ (B-7)
which through simple trigonometry becomes
dTerr
i, = tanf,, — tan#f,,, (B-8)

where 04, and 0,, are the angles at depth z. of the upgoing and downgoing rays respectively.
These angles can be derived from p, and p, through the rule that vp =sin#.

The second part of equation (B-6) must be approached indirectly. First, note that even
though travel time At; within a layer may vary, the overall travel time ¢ must remain constant.

Thus, as At; increases, t — At; decreases. As a result,

ddAz;; - _%‘ (B-9)
Next, it is useful to note that P .
f = dt/dz, (B-10)
Then dt dt dt
G & & (10

where t, and t, are the total travel times of the downgoing (shot) ray and the upgoing (geophone)

ray, respectively. An application of the chain rule yields

dt _ de, dl, dt,dl,

- 8 -9 B-12
dz, dlydz, dl;dz,’ ( )

where [, and I, are the total path lengths of the downgoing (shot) ray and the upgoing (geophone)

ray, respectively. Through the application of some trigonometry, and thanks to the fact that

v=dl/dt,
d_1 1 1 1 (B-13)

dz, vscosb,, vg cosby,’

where v = U(Zse, 2¢), and vy = v(z4e, 2e)-

Now it is possible to combine equations (B-6), (B-8), (B-9), (B-10), and (B-13) and write:

OZerr(5) sin 84, cos 85, — sin f,, cos Oy
)y, :
OAL; cos 0, + cos by,

(B-14)

where v, = v(2,).
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The fourth term in equation (B-2) can be found by differentiating equation (A-3), with the
result:
dAt; At;  pAz;sinb;
= — —_— B-15
dv,' v + Uy cos3 0,‘ ( 1 )
The final result, found by substituting equations (B-4), (B-5), (B-14) and (B-15) into equa-

tions (B-1) and (B-2), is:

pAz; sin 8y, cos 05, — sin §,. cos 8y, (_ At; | pAzsin; > (B-16)

Al =+ — v,

cos3 6; cos 0. + cos O, v; v; cos3 0;

The = sign is positive when the ray under consideration is the upgoing (geophone) ray; otherwise

it is negative.
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APPENDIX C

DETERMINING THE FRECHET MATRIX WHEN v = v(z, 2)

When the medium is both laterally and vertically heterogeneous, calculation of the Fréchet
matrix is more complicated, but not unduly so.

Several different approaches to this calculation may be taken. The simplest approach is to
perturb in turn each grid point in the velocity model, and see how all the 2. values vary. This
approach is much too expensive, since the number of rays that would have to be traced equals
the number of grid points in the model times the number of sets of picked parameters.

I have chosen to take a different approach, performing fewer perturbations and propagating
the results of these perturbations by means of a transfer matrix. I shall begin by writing an

equation analogous to equation (B-2):

OZerr _ OTery Oz, OZerr ﬂ
8v,~ B a:l:e av,- ot 81;,-'

(C-1)

Here I am discussing the jth ray, but the subscript 7 has been dropped for the sake of clarity. I
have defined v; to be the velocity in the ith box of the model (technically, it is the velocity at the
tth grid point, but it is more convenient to speak in terms of boxes), z, is the horizontal position
of the endpoint of the jth ray, and ¢ is the travel time of the jth ray from the surface to the depth
Z.. As in Appendix B, the endpoint of the ray is defined to be the point where the ray intersects
the line z = z, (recall that z, is the depth where the computed travel time equals the measured
travel time). I also follow Appendix B in concentrating my attention on only one of the two rays
associated with the jth set of picked parameters.

Equation (C-1) gives the overall formula for determining the Fréchet matrix; now it is nec-
essary to find the values of the individual terms of this formula.

The first term in equation (C-1) is determined by a formula similar to equation (B-4):

OTerr
oz,

err

e]
= —1 (downgoing); otherwise, me =1 (upgoing). (C-2)
e

The third term in equation (C-1) is analogous to equation (B-14), but without the assumption

that vy, = vy,
OTerr sin 0, cos ,, — sin §,, cos b,
ot
with the variables on the right-hand side defined as in Appendix B.

= —VgeVge

C-3
Vge COS 035 + Uge COS Bge ( )

The second and fourth terms of equation (C-1) are not found so easily, but they can be
determined nonetheless. To begin with, I shall define some more terms, which are illustrated in
Figure C-1. Recall that up until now I have denoted velocity boxes with a subscript 7, meaning

the ith box in the velocity model. It is useful at this point to introduce a different subscript, (I),
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v
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T\ Ray j
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Figure C-1: Definition of terms. Ray j travels through box (1), the Ith box along its path. It enters
the box at spatial coordinate r(i-1) (measured parallel to the boundary where the ray enters),
where it has ray parameter p-1)- It leaves the box at () (measured parallel to the boundary

where the ray exits), with ray parameter pu)- The velocity within the box is v(), and the ray
takes an amount of time Aty to travel through the box.

which means the /th box that ray j passes through (the parentheses are meant to distinguish this
new type of subscript from the previous type). For instance, ray j starts at the surface, so the
first box it passes through has velocity v(1), the second box it goes through has velocity v(2), and
so on.

A ray entering the {th box has ray parameter Pi-1), and as it leaves the box it has ray
parameter p(;). The position of the ray as it enters the box is denoted by r(1~1), which is a spatial
coordinate measured along a certain axis; this axis is set to be parallel to the boundary that the
ray crosses as it enters the box. The origin of this coordinate system is unspecified, since I will be
concerned only with changes in r(i-1), not with its absolute value. Similarly, the position of the
ray as it exits the box is denoted by r(1), which is measured along an axis parallel to the boundary
that the ray crosses as it exits. This may seem like an odd way to measure the spatial coordinates
of the ray, but it will make subsequent work easier.

The Ith box has, as noted previously, a velocity v(), and the ray takes an amount of time
At(;) to travel through this box.

The box containing the endpoint of the ray may be denoted by L; by definition L) is

measured along an axis parallel to the line z = z,.
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Now that these terms have been defined, it is possible to specify a transfer matrix T
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The values of the terms in T o May be determined analytically, but I prefer a finite-difference
method: perturb r(-1) and P(i-1), and see how @), Py, and Aty vary in response.

The next formula is essential, and I give it without proof:

aT(L) aT([) \
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Be sure to distinguish between L and [ in this formula. The quantities in the far right-hand
3
vector (a—r(ll, etc.) can be determined analytically, but again I prefer to find them through a
v

finite-differencing method, perturbing v(;) and seeing the response.

Equation (C-5) gives the second and fourth terms of equation (C-1) directly, if the subscripts
¢ and ({) refer to the same box (that is, if the ith box in the velocity model is also the Ith box
that ray j passes through). It is only necessary to make the identifications

oz, = —6r(L) and ot _ ot
dv; vy

dv; Bv(,)' (C-6)
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Halley's comet, 1910:

One of the best apparitions in history. The orbits of the comet and of
earth pass close in two places: the second of these is better, as the

comet is then well-baked from its recent passage by the sun and is very
bright and has a long tail. In 1910 nearly the most favorable conjunction
at this second approach point was achieved. Furthermore, the comet passed
almost centrally across the face of the sun (a remarkab]e coincidence) and
the fringes of its tail swept across the earth. The comet's solid nucleus,
only a few miles across, passed across the sun unobserved, despite the best
efforts of the day.

The great January comet snuck up on astronomers from behind the sun before
any of them could attach their name, and burst upon the scene in full qlory,
brighter that even Halley's in that year. Many people, waiting for Halley's
due a few weeks later, thought this WAS Halley's and never got the two straight.
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