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ABSTRACT

Adequate sampling of the reflected wavefield is required to produce high resolu-
tion images of the earth’s interior from reflection-seismic data. Often, especially in
three-dimensional surveys, spatial sampling is inadequate, and the result is spatial
aliasing and loss of resolution. While spatial aliasing is a missing data problem, the
available data are multichannel, and summing (stacking) is used to merge information
from different channels. The goal of this thesis is to use the multichannel data in the

most effective way to overcome spatial aliasing.

A linear operator whose formulation is based on the wave equation relates the
potentially aliased seismic data to the model: the ideal, well-sampled, zero-offset sec-

tion. Inversion of that operator is multichannel inversion.

Treating missing data as zero data and performing partial migration before stack-
ing are equivalent to the application of the transpose of the operator we need to invert.

This processing is adequate only in the absence of spatial aliasing.

I used a conjugate-gradient-inversion program and found that convergence was
achieved in less than ten iterations. The first iteration was equivalent to conventional

processing. Following iterations showed substantial improvement relative to the first.

Separation of the multichannel inversion to many small inversions, one for each
spatial frequency, is possible when the sampling is uniform and assuming that lateral
velocity variations are mild. Full separation in both space and time is possible using
the log and the Fourier transforms. (The log transform is the resampling of the data

in the logarithm of the time).

As applied to synthetic and field data, multichannel inversion, combined with spa-

tial spectral balancing, was effective in overcoming spatial aliasing.
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