CHAPTER 5

General theory and further applications

Residual statics estimation is only one of many inverse problems that arise in the
analysis of geophysical data. Geophysical inverse problems are usually solved by
minimizing a function defined over the space of model parameters—the same approach
used for estimating statics. Questions of uniqueness aside, these optimization problems
can be broadly classified into two types: those that contain only one minimum, and
those that contain more than one. The type with one minimum is called linear inver-
sion because the solution may be obtained by solving a set of linear equations. When
there are many minima no such set of linear equations exists unless a good initial guess
can be made. In the absence of a good initial guess, the problem becomes nonlinear
inversion. In general, nonlinear inverse problems pose the same computational
difficulties that occur in residual statics estimation: a global minimum must be located

among many local minima.

I present in this chapter a general theory for the use of simulated annealing to
solve nonlinear inverse problems. My goal is to define a class of problems for which
simulated annealing can be a practical tool for nonlinear inversion. After developing
the theory, I return to the problem of residual statics estimation to show how it con-
forms to this general class of problems. I then propose three further applications of
simulated annealing in reflection seismology: frequency-dependent statics estimation,
deconvolution, and velocity estimation. In concluding the chapter, I briefly examine

two potentially useful concepts from statistical mechanics.

5.1 NONLINEAR INVERSION AND OPTIMIZATION

Consider a physical system (for example, the Earth) that is characterized by a
finite set of unknown model parameters X = {X;, ..., X} } in the M-dimensional
parameter space. An experiment performed in this physical system produces a finite
set of data D = {D, ..., Dp } in the R -dimensional data space. X and D are (ran-

dom) variables that assume specific valuesx = {z, . . . , gy }ord = {d, .. ., dp }.
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Let a set of R (nonlinear) functions G; be denoted by G. G is a function of the
model parameters x and describes the theoretical outcome of the experiment. The

observed data d is contaminated by additive noise and is represented as
d = Gx)+n , (5.1)

where n = {n, . .., np } is a realization of the random noise N, which is assumed to
be independent, identically distributed, and independent of X. It is assumed that only

discrete values are allowed when X, D, or N is the argument of a probability distribu-

tion.

Solving equation (5.1) for an x that represents the entire underlying set of model
parameters is the most ambitious of geophysical inverse problems. In a more realistic
approach, x represents a vector of parameters for a smaller problem, in which many
physical quantities are previously defined. In such an approach, for example, x
represents shot and receiver statics, and it is assumed that stacking velocities are

known.

Inversion of (5.1) is generally performed by optimization. One seeks the x that

solves the minimization problem

min f [d, G(x)] . (5.2)

X

In least-squares formulations, f is typically the squared difference between G(x) and
d. Using G(x) implies that forward modeling is done; alternatively one can minimize a
function that depends on G, the (approximate) inverse of G. In this case the optimi-
zation problem is

min f [G7d; x)] . (5.3)

X
G operates on d, but the precise form of G™! may depend on x.

Whether approach (5.2) or (5.3) is chosen, optimization remains a basic problem.
In many geophysical inverse problems the function f , whatever its form, is rife with
local minima. One might naively suggest that an exhaustive evaluation of all possible
solutions be made. As we have seen with residual statics estimation, however, this
suggestion is usually not practicable. Specifically, if M parameters can each assume
one of N values, then there are N¥ possible solutions, usually far too many for an

exhaustive search to be performed.

Despite this assumed complexity, equations (5.2) and (5.3) do not necessarily pose
intractable optimization problems. The key to their solution, in a general sense, is

prior information. For example, conventional approaches to nonlinear inversion usually
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incorporate an initial guess x° for x. The remaining perturbation Ax = x — x° is then

assumed to approximately satisfy the linear relation
G(x) ~ G(x% + FAx ,

where F is a matrix of partial derivatives 9G; /Bx]- evaluated at x°. Then, letting

d® = G(x°) + n and Ad = d - d°, one solves for the Ax that satisfies

FAx = Ad .

1

This yields a possible solution x! = x% + Ax, which may or may not be satisfactory

for minimizing (5.2) or (5.3). If it is not, the procedure is iterated by replacing x° with
x! etc. Tterative techniques of this general form are widely used—reviews are con-
tained in Parker (1977), Aki and Richards (1980), and Lines and Treitel (1984). The
basic shortcoming of these techniques, however, is their reliance upon a good initial

guess, without which they might fail severely.

What can be done, then, if there is no basis for an initial guess? Prior informa-
tion, in the form of Bayesian inference, may still light the way. If a prior probability
distribution P (X=x) can be formulated, low probabilities can be assigned to much of
the parameter space; that part of the parameter space is thereby effectively eliminated
from consideration. The prior distribution represents relative weights assigned to all
possible x before any data are collected. After the data are observed, standard statisti-
cal analysis is used to combine the prior distribution and the observed data to obtain
the posterior probability distribution P (X=x | D=d) via Bayes’ theorem (Box and
Tiao, 1973):

PD=d|X=x)P X=x)

PX=x|D=d) = Xy . (5.4)

With this formulation, one method of solution is to find the x that maximizes the pos-
terior probability. This step is often called maximum a posteriori (MAP) estimation,

and presents yet another optimization problem.

One interesting generalized approach to the incorporation of prior information in
nonlinear inversion is described by Tarantola and Valette (1982). Although their for-
malism is appealing, the generalized use of prior information alone does not necessarily
make a problem computationally tractable. Successful nonlinear geophysical inversion
often requires more—specifically, a method that employs available knowledge to obtain

a computable solution. Simulated annealing is one such method.

In the next section, I define a class of problems for which the prior distribution is

the Gibbs distribution of statistical mechanics. Then, following Geman and Geman
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(1984), I show in §5.3 how a Bayesian formulation leads to an expression for the poste-
rior distribution that is also a Gibbs distribution. The application of simulated anneal-
ing then arises naturally from the desire to find the value of the model parameters that

maximizes the posterior probability distribution.

5.2 GIBBS-MARKOV MODELS

Large-scale inverse problems can often be subdivided naturally to a smaller, com-
putationally more convenient scale. The surface-consistent analysis of seismic data, for
example, can be divided into related sub-units, the size of which depends on the length
of the seismic cable (typically much less than the length of a seismic survey). The
analysis that follows attempts to unify estimates of parameters made in sub-units with
estimates that are consistent with the entire dataset. The statistical model I use can
be described in either of two ways that have been shown to be formally equivalent.
One model, a Markov random field, is a microscopic viewpoint derived from probability
theory. The other model, the Gibbs distribution of statistical mechanics, is a macro-
scopic description of the problem. The goal is to divide a large problem into smaller,
more manageable parts while maintaining the relationships between the smaller parts
as precisely as possible. Ultimately, this goal leads to the application of simulated
annealing for the solution of a large-scale nonlinear inverse problem. The Gibbs-

Markov model forms the foundation of this objective.

Markov random fields (Kindermann and Snell, 1980) describe the microscopic
structure common to the particular class of problems I address. A Markov random
field is the spatial counterpart of the one-dimensional Markov chain. Recall that the
simplest form of a Markov chain is a stationary sequence in which the conditional pro-
bability of an event at time ¢ depends only on the value of the sequence at time ¢ — 1
[see equation (3.11)]. A straightforward generalization leads to the consideration of a
two-dimensionally indexed set of random variables X = {X;; }. The X;; define a
Markov random field if the value of each X;; depends only on a neighborhood Aj; of

(¢, 7). A;; might contain only the nearest neighbors of 75

AU:{(Z+1’])7(z_17]))(2;]+1)7(2,]—1)} . (55)

Higher dimensionality and more complex neighborhoods are possible. In general, neigh-
borhoods contain only those model parameters that most immediately influence the
values a given parameter may assume. A two-dimensional Markov random field with

neighborhood A;; is stated as

P Xjj=a;; | Xpy=ay, (k,1)#(,5)] = P[Xy; ==;; | Xy=2, (k,1)EA;] . (5.6a)



-78.

It is also required that all possible parameter vectors have positive probability:
P(X=x) > 0 forall x . (5.6b)

Figure 5.1 shows an example of a Markov random field on a two-dimensional lattice.

FIG. 5.1. A schematic representation of a Markov random field with nearest-neighbor
interactions on a two-dimensional lattice. The probability distribution of the parame-
ter located at position * depends only on its nearest neighbors, the n’s; thus P ( * | all
else ) = P( * | neighbors ).

The notion of a Markov random field describes only the general form of local, con-
ditional probabilities. While useful in concept, these local conditional probabilities pro-
vide information only on the microscopic interactions of the parameters, not on the
behavior of the complete set of parameters taken as a whole. Information at the mac-
roscopic level should be in the form of a joint probability distribution P (X=x). This
form is fortunately available, because all Markov random fields exhibit a Gibbs proba-
bility distribution, and all Gibbs distributions define a Markov random field (Geman
and Geman, 1984; Kindermann and Snell, 1980; Moussouris, 1974). The Gibbs distri-
bution was introduced in §3.3.1. Recall that X has a Gibbs distribution if

-E(x)

LZ e T (5.7)
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In general, the energy £ (x) can be expressed as the sum of local potentials Ve (x) such

that
E(x) = —203 Ve(x) . (5.8)

Each V¢ depends only on a subset C' of X; each member of C is a neighbor of the
other member. The subsets C are called cliques. For the two-dimensional model with

neighborhoods A;; given by equation (5.5), each clique contains one pair of parameters.

The Gibbs-Markov equivalence lends physical significance to the purely probabilis-
tic concept of a Markov random field. If a problem can be divided into sub-units that
satisfy equations (5.6a) and (5.6b), then physical insight gleaned from the statistical
mechanics expressed by equations (5.7) and (5.8) is applicable to that problem. The
key to intuitively connecting the physics with the statistics lies in the energy function
(5.8). Here it is evident why Gibbs distributions and Markov random fields are closely
related: the same neighborhoods limit the spatial range of both the conditional proba-
bilities (5.6a) and the z;; needed for the evaluation of the local potentials V. To
prove formally that a Gibbs distribution defines a Markov random field, define
X = {X;; } to be a random variable with a Gibbs distribution. Then

— — Py — —ep{-E(Xx)/T}
P [Xz] 1] l Xkl kl s (k 71 )7&( ] )] XI:GXP{—'E (Xij )/T} ’ (5‘9)

where x¥ = x everywhere except possibly at z;;. Substituting equation (5.8) into

equation (5.9),

exp{% Ve(x)/T }

P [Xij =Zij | Xy =2y, (K1 )AL, 5)] = Eexp{zc)vc (xij )/ T} : (5.10)

x¥

Because x"/ can differ from x only at i, Ve(x) = Vg (x") for any clique C that

does not contain z;;. Thus all terms corresponding to cliques that do not contain i
cancel from the numerator and denominator in equation (5.10). The remaining terms
then include only z;; and its neighbors zy, (k,/)€A;;. Thus the Markov probabilities
of equation (5.6a) hold, and it is therefore shown that a Gibbs distribution defines a

Markov random field.

The utility of the Gibbs representation will be evident shortly. Note now, how-
ever, not only that a large problem has been subdivided into smaller parts (Markov
probabilities), but also that the joint Gibbs distribution describes the presumed

interactions of these individual parts by supplying the prior probability of any given
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parameter vector. Moreover, given the prior, the posterior distribution can now be

derived, and the statistical statement of the problem can be completed.

5.3 BAYESIAN FORMULATION
Assuming that X is a Markov random field, one may write the joint prior proba-
bility distribution for the model parameters as

-E(x)
e T . (5.11)

1
7z
Following Geman and Geman (1984), I now show that the posterior probability
P(X =x | D =4d) is also a Gibbs distribution.

Starting with Bayes’ theorem [equation (5.4)], substitute the Gibbs prior for
P (X=x) and take P (D = d) to be constant. We then obtain

~E(x )
P(X:x|D=:d)=—1Z—P(D=d|X=x)e T (5.12)
where Z is now a new constant. The noise N = {N, ..., N} is assumed to be

independent, identically distributed, and independent of X. For analytic convenience

the probability distribution of the noise is assumed to be zero-mean with the form

_l[ Hnll, ],,

P(N=n) = c¢cle¢ * 7 (5.13)

where ¢ and o are constants and || e ||, is the L? norm such that
r

(|l n|],) = R nf If p =2 the noise is Gaussian, and if p = 1 the noise

1

is exponential.

Now solve for the posterior. Rewrite equation (5.12) as

-E(x)
P(X:x|D:d):lZP[D:G(x)+n|X=x]e T
. -E(x)
:7P[N:d—G(x)|X:x]e T
Because N is independent of X,
] -E(x )
PX=x |D=d) = ZP[N=d-G(x)]e T

Z

and by substituting from equation (5.13), we obtain
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PX=x|D=4d) — %

where Z is again a new normalizing constant. By writing

E'(xd) = E(x) + ?T[ ||d—<j(><)|lp ]

one sees that the posterior distribution is also Gibbs with energy function E/(x,d):

-E'(x ,d)
PX=x|D=d) = % ¢ T . (5.14)

Note that the form of the Gibbs posterior is unaffected by the value of p; thus the

noise need not be Gaussian.

Geman and Geman (1984) derive some additional results showing that the poste-
rior neighborhood structure is slightly modified to include ‘“‘second-order” neighbors
(i.e., neighbors of neighbors). For computational purposes, however, the prior and pos-

terior neighborhood structures can be taken to be equal.

The model parameters that fit the data best, from the viewpoint of Bayesian
inference, are determined by maximizing the posterior probability (5.14). This is maa-
imum a posteriort (MAP) estimation. Maximizing this posterior probability by conven-
tional gradient techniques is often not possible for nonlinear problems, because many
local extrema may exist. However, because simulated annealing creates random solu-
tions x drawn from a Gibbs distribution, the method is, in theory, drawing random
solutions from the posterior distribution (5.14). The posterior distribution may be mul-
timodal in a multidimensional space, but if T is chosen carefully the random solutions
have a high probability of being near the global maximum of that distribution. In fact,
under conditions of strict equilibrium, the probability of the maximum being attained

is given by P (X=x,,,, | D=d). As T decreases, this probability becomes greater.

5.4 RESIDUAL STATICS ESTIMATION: A NEW PERSPECTIVE

The analysis in the previous sections yields the following conclusions. If a prob-
lem conforms to a Gibbs-Markov model, then the prior probability distribution of the
model parameters can be a Gibbs distribution. Furthermore, if the noise is indepen-
dent of the model parameters, then the posterior probability distribution of the model
parameters is also a Gibbs distribution, but now the energy is explicitly a function of
the model parameters and the data. In the previous chapters, no distinction was made

between prior and posterior energy functions; the energy function implicitly included
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the influence of the data [see, for example, equation (3.3)]. The statics problem was
modeled with a Gibbs distribution, and simulated annealing was employed to obtain
the solution with the greatest stack power. Using the perspective of this chapter, one
can now see that this method is equivalent to obtaining the most probable solution,

given the Gibbs prior and the observed data.

The structure of the statics problem is closely related to that of a Markov random
field, though the statics problem is not in the form of a simple two-dimensional lattice.
See Figure 5.2, and then refer back to Figure 5.1. Because the seismic cable is shorter
than the length of a seismic survey, an individual shot or receiver static affects the
stack of only those CMP gathers to which that shot or receiver contributes seismo-
grams. The relevant midpoints physically span a cablelength. Thus, as Figure 5.2
shows, an individual stack-power calculation depends only on the value of the shot and
recetver statics located within a cablelength of the shot (or receiver) static of interest.

These shot and receiver statics are the ‘‘nearest neighbors” in the sense used in a
Gibbs-Markov model.

Local potentials also have a well-defined role. Using the notation of Chapter 3,

define the power in the stack of a single CMP gather y by

ch(S,P) = ) [Xh)dyh(t + S, n)t iy, h)) ]

t

2

The objective function for statics estimation [equation (3.3)] can now be rewritten as

E(sr) = -3 Vg (sr) . (5.15)

y
This form of the objective function is the practical implementation of the general state-
ment given by equation (5.8). In equation (5.15), each ch depends only on a subset
Cy of s and r. Each member of C, is a neighbor of each other member; the members
of €, are simply the shot and receiver statics associated with CMP gather y. Thus

CMP gathers assume the role of the cliques described previously.

A nearest-neighbor model was implicitly used in the description of the Metropolis
algorithm given in §3.3.2. For example, equation (3.5), which describes the contribu-

tion to stack power from shot static s;, can be rewritten as

$s, = 2 Vg (sr) . (5.16)

yey,,

The range of the summation is limited by the subset Y, of all midpoints y. The shot

and receiver statics associated with these midpoints are the nearest neighbors of s; .
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FIG. 5.2. Schematic representation of a seismic survey conducted with a 6-trace cable.
The shot, midpoint, receiver, and offset axes are denoted by s, y, r, and h, respec-
tively. Each dot represents a single seismic trace (the time axis may be taken to go
into the page). Each trace is uniquely specified by any 2 of the 4 coordinate axes. In
this picture, all traces recorded at receiver location r« are connected by a vertical line.
Calculation of the stack power ¢, given by equation (3.6) requires summing over the

h-axis for all midpoint gathers containing a trace recorded at location r; this sum
over h is depicted by the diagonal lines perpendicular to the y-axis. This calculation
of stack power depends only on the shot statics and receiver statics located on the s -
and r-axes at the positions marked by a dash. These are the “nearest neighbors” of
r« in the sense used in a Gibbs-Markov model.

The computations in the one-step heat-bath algorithm are limited by the same
nearest-neighbor model. Equation (3.7), the transformation of a crosscorrelation func-
tion to a probability distribution, is essentially the same as equation (5.9). Simply
equate the crosscorrelation function g, (7,) to the energy E (x). The entire objective
function need not be calculated, however; only that part of it which is affected by the
m th parameter needs to be computed. This local computation is the surface-
consistently averaged crosscorrelation function given by equation (3.8). Equation (3.8)
is thus the same as equation (5.16) with normalized crosscorrelation substituted for

stack power.
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5.5 FUTURE APPLICATIONS

Several other problems in reflection seismology can be placed in the framework of
a Gibbs-Markov model. For the model to be successfully applied, it appears that the
computations required for the evaluation of the local potentials V,, associated with an
individual parameter must not require too much effort. Specifically, the computations
of V¢ required for a single update of one parameter must be considerably easier than
the computations required for the evaluation of the entire objective function E (x). If

this 1s not the case, F (x) must itself be easily computable.

In this section, I mention three possible future applications: frequency-dependent
statics estimation, deconvolution, and velocity estimation. I survey each in the form of

a brief proposal; considerable further research is required in each case.

5.4.1 Frequency-dependent statics estimation

In theory, the residual statics algorithm can be extended to the estimation of
frequency-dependent statics. The statics model discussed thus far uses simple linear
phase shifts. In a frequency-dependent model, however, phase shifts can be a more

general function of frequency.

The problem of frequency-dependent statics is difficult to solve with traveltime
models similar to equation (3.2) because phase shifts greater than | 7| are computa-
tionally ambiguous (Sword, 1983). Some form of phase unwrapping (Tribolet, 1979) is
usually thought to be necessary. In principle, adaptation of the present statics algo-
rithm is straightforward and requires only the application of two elementary theorems
from Fourier transform theory (Bracewell, 1978). The Rayleigh-Parseval theorem
states that power in the time domain equals power in the frequency domain. So for a
function f (¢) and its Fourier transform F (w),

thlf(t)|2=E|F(w)12-

w

In addition, the shift theorem states that the Fourier analog of a time shift is multipli-

cation by a complex exponential:
ft-7 D e F(w

Then by letting the Fourier transform of d, (¢) be denoted by D, (w), one can include
frequency dependence in equation (3.5) by writing

2

g, sw), 1) = ¥ ¥ |8 renrnon@ip oyl (517)

' yeY, w h
1
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Similar changes can be made to equation (3.6). Note that the s; and r; are now func-

tions of w.

As I have noted previously, solutions to statics estimation problems are inherently
nonunique. This problem of nonuniqueness is worse in the frequency-dependent case if
each w-component is treated independently of the others. A physical model of
frequency-dependent phase shifts should therefore require that the phase shifts be
locally correlated with each other. This condition may be incorporated into equation
(5.17) by smoothing s(w) and r(w) over w. When these smoothed functions are

represented by 8{w) and T(w), the energy function for frequency-dependent statics is

E[Sw), Tw) | = -3¢, [8w), T(w) ]~ ¢, [S(w), Fw) ]

5.4.2 Deconvolution

Frequency-dependent statics estimation is closely related to surface-consistent
deconvolution. Although the application of frequency-dependent statics would not
change the power spectra of the data, it would equalize phase surface-consistently, and

thus solve a considerable part of the deconvolution problem.

One of the fundamental problems in seismic deconvolution is the definition of an
objective function. Objective functions have commonly been in the form of a sum-
squared error resulting from, for example, the linear least-squares problem posed by
prediction-error filtering (Claerbout, 1976). Deconvolution need not be a linear prob-
lem, however. For example, the method of minimum entropy deconvolution (Wiggins,
1978; Donoho, 1981) employs an objective function that cannot be minimized by linear
least-squares methods; iterative descent from an initial guess is usually employed to
estimate the coefficients of the deconvolution filter. Wiggins (1985) claims that sub-
optimal local minima are one of the drawbacks of the minimum entropy approach. My
own tests (not shown) confirm this observation, but these tests also show that the
problem of local minima is not nearly as severe in minimum entropy deconvolution as

1t 1s 1n statics estimation.

The prospect of applying simulated annealing to deconvolution creates new possi-
bilities for the construction of suitable objective functions. Any function that ade-
quately describes the objective of deconvolution is admissible; there should be no con-
cern with local minima or even differentiability. When simulated annealing is applied
to deconvolution, the model parameters would be the filter coefficients and the ‘“neigh-

borhoods” would encompass the entire filter.
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5.4.3 Velocity estimation

Velocity estimation can also be viewed as an extension of the residual statics algo-
rithm. Statics are essentially the components of a one-dimensional velocity function.
In velocity estimation, a two-dimensional grid would be parameterized by velocity, and
one would seek the velocity distribution yielding the maximum stack power. Toldi
(1985) presents a method of stack-power maximization in which perturbations to a
velocity model are linearly related to estimates of stacking velocities. Fowler (1985)
discusses an extension of this technique in which perturbations to a similar velocity
model are linearly related to estimates of time-migration velocities. In both of these
methods, the results are dependent on an initial guess of the velocity model. Maximiz-
ing stack power by simulated annealing could be a valuable approach if the initial
guess were difficult to obtain or if the dependence of the final solution on the initial
guess were strong. The application of simulated annealing to velocity estimation might
require too much computational effort, however. Construction of the appropriate form
of the functions Vi would probably entail far more work than the simple shifts and

sums needed for residual statics estimation. For more details, see Rothman (1985).

5.5 TWO USEFUL CONCEPTS FROM STATISTICAL MECHANICS

Many concepts from statistical mechanics may be useful in studying the applica-
tion of simulated annealing to nonlinear inversion. 1 discuss two of these concepts

below.

5.5.1 Critical temperature

The notion of a critical temperature, previously encountered in Chapter 3 and 4,
is perhaps the single most important issue in the application of simulated annealing to
statics estimation, and probably nonlinear inversion in general. As defined in physics,
a critical temperature is the temperature at which a liquid changes to a solid, or the
temperature at which a ferromagnetic substance acquires permanent magnetization.
These examples of the spontaneous ordering of matter are called phase transitions and
have been the object of extensive study [see, for example, Stanley (1971)]. In Monte
Carlo statics estimation, the critical temperature T\, may be broadly defined to be the
largest value of T that leads to significant correlations between shot and receiver stat-
ics. More generally, 7T, is the temperature at which significant correlations between
parameters extend well beyond the nearest neighbors. Convergence is possible only

below T,. As I discussed in Chapter 4, the critical temperature is presently estimated
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empirically. An analytic approximation or an efficient empirical method of estimating

T, remains an open research problem.

5.5.2 Ergodic average

The second useful concept from statistical mechanics is the ergodic average. In
the original formulation of Metropolis et al. (1953), the Monte Carlo algorithm was

used to estimate the ergodic averages
21 (x) exp{-E (x)/ T}
X
diexp{-E(x)/T}

<T®> =N/ ®PX=x) — (5.18)

for a given T = T'| and some function f (x). These averages are valid only if the sys-
tem has reached equilibrium. Equilibrium is achieved quickly at high T, and, as
demonstrated in Chapter 4, relatively slowly when T < T,. If one is reasonably cer-
tain that equilibrium has been attained, the generation of the ergodic averages (5.18)
can be useful for estimating means, variances, covariances, and other statistical quanti-
ties. Thus one can obtain not only a simple answer (the maximum a posteriori solu-
tion) but also estimates of resolution and accuracy. Importantly, the posterior proba-
bility distribution itself can be estimated by constructing a histogram of the output of
each Iteration at constant temperature [and, formally speaking, by substituting
P (X=x | D=d) for P (X=x) in equation (5.18)]. The posterior probability distribu-
tion contains the most fundamental information that can be provided by a solution to

an inverse problem (Tarantola and Valette, 1982).



