CHAPTER 4

Residual statics estimation by simulated
annealing: results

This chapter contains results of residual statics estimation by simulated annealing
for synthetic and field data. Both sets of data contain challenging problems that
would normally cause gross errors in statics estimation. In both cases, however, the
Monte Carlo statics algorithm is able to locate solutions that are nearly globally
optimal. Any errors that do occur are due to poorly resolved spectral components of
the statics solution, not the algorithm’s inability to locate a deep minimum of the

objective function.

The synthetic data results were generated using the adaptation of the Metropolis
algorithm described in §3.3.2. Because the field data pose a more difficult problem for
statics estimation (due to larger statics and more shots, receivers, and offsets), the
Metropolis algorithm is too slow to be effective within a practical length of time. Thus
the more powerful, one-step heat-bath method (§3.3.3) was applied to the field data.
Despite the differences between the two techniques and the dissimilarities between the

field and the synthetic data, both methods produced remarkably similar results.

As discussed in the previous chapter, there is no general practical scheme to deter-
mine the rate at which the temperature T is reduced. The results illustrated here
were obtained by experimentation. Although the temperature-reduction schemes
differed for the two examples, a single concept emerges from the two tests: a carefully
chosen constant temperature can suffice for convergence. Because the choice of T
appears to be data-dependent, I defer further remarks on this topic until the problem-

specific discussions in §4.1.2 and §4.2.2.



4.1 SYNTHETIC DATA EXAMPLE

4.1.1 The data

The synthetic data simulate the results of a survey conducted with a 12-trace
cable, off-end shooting with a two-receiver group gap, and evenly spaced shots and
receivers. There are 100 6-fold common midpoint gathers. The sampling rate is 4 ms
and the data contain frequencies from 5 to 60 Hz. The data, prior to the introduction
of static shifts, are shown in Figures 4.1a and 4.1b. Figure 4.1a shows four representa-
tive ‘“‘moveout-corrected” CMP gathers, and Figure 4.1b is the common midpoint stack.
The cablelength extends over 24 stacked traces. The signal-to-noise ratio (the total
power of the signal divided by the total power of the noise) after stack is approxi-
mately 2.0. The entire dataset is scaled to an rms amplitude of 100. For all traces the
signal is identical, except for the bulk time shift simulating a fault. (Real faults would
not exhibit such a severe discontinuity before migration.) These data represent the

desired solution for the test illustrated in the following figures.

Random shot and receiver statics are displayed in Figure 4.2. These statics vary
between 440 ms, in 4 ms increments. Figure 4.3a shows the same common midpoint
gathers shown in Figure 4.1a, but now the traces have been shifted in accordance with
the statics model in Figure 4.2. Figure 4.3b is the common midpoint stack after the
model statics were applied. Because of the severity of the statics, almost no indications
of reflection events can now be observed. The data in Figures 4.32 and 4.3b are the

input to the statics estimation algorithm.

4.1.2 Processing parameters and method

Statics were estimated using the adaptation of the Metropolis algorithm described
in §3.3.2. The power computations in equations (3.5) and (3.6) were performed over
the entire length of the traces (280 ms) depicted in the stacked sections. Random
guesses for shot and receiver statics were constrained to fall within +40 ms, in 4 ms

(one-sample) increments.

For this example,
Tk == Tologko / lOg(kO -+ 2/\7) , (41)

with T, = 4500, ko == 5000, and k equal to the number of iterations. (One iteration
includes one attempted perturbation of each shot and receiver static.) The choice of
this rate of temperature reduction was motivated by a theoretical result of Geman and

Geman (1984), who proved that convergence occurs when T, == Ty/logk, with the
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FIG. 4.1a. Four “moveout-corrected” CMP gathers. The gathers are shown without
static shifts; there are 6 offsets in each gather. This correct alignment of traces is the

desired solution for pre-stack data.
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FIG. 4.1b. CMP stack prior to the introduction of static shifts.
extends over 24 midpoints; there are 100 midpoints in total. An

The cablelength
artificial fault has

been placed at the center of the section. The signal-to-noise ratio is approximately 2.

This 1s the desired solution for stacked data.



-42-

(]
<
O
o
£
-
< 1 T T T T Y
'0 10 20 30 40 50
shot number
o
<
O
5o
£
o
< T T _ T T T
'0 10 20 30 40 50

receiver number

FIG. 4.2. Random shot statics (above) and receiver statics used to generate the test
data shown in Figures 4.3a and 4.3b. Statics range between +40 ms, in 4 ms incre-
ments, for both shots and receivers.
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FIG. 4.3a. The CMP gathers of Figure 4.1a after the application of the static shifts in
Figure 4.2. Note how the application of the statics has degraded the appearance of the
data.
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FIG. 4.4b. OMP stack after 3080 iterations. Although long-wavelength statics remain
to be resolved, the bulk of the algorithm’s work is completed. Note that, despite the
ambiguity between structure and long-wavelength statics, the artificial fault at trace 50
is properly resolved.
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FIG. 4.4d. CMP gathers after the statics solution has been applied. This should be
compared to the input (Figure 4.3a) and to the desired solution (Figure 4.1a). CMP 60
exhibits a slight error due to the poorly resolved long wavelength. The time axis is
shorter now because the application of statics creates zeroes at early and late times.
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FIG. 4.4e. Stack power versus iteration number for the test leading to the result
shown in Figure 4.4c. Stack power is computed every 10 iterations; the input stack
power is normalized to 1. The final solution yields a stack power of 3.354, which is
short of the true solution by 1.3%. Note the sudden increase in power after 3000 itera-
tions. This abrupt change is analogous to rapid crystallization. Temperature decreases
by less than 119 between the first and last iteration.
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FIG. 4.5. Difference between the estimated statics and the true statics for the result in
Figure 4.4c. The 8 ms rise in the right half of Figure 4.4c is the result of the constant
4 ms error for approximately the last 20 shot and receiver statics. The allowable
values for statics fell within 440 ms, in 4 ms (one sample) increments. The noise con-
tamination for this test was too strong for the long-wavelength residual to be resolved.
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FIG. 4.6. The best result of 100 trials of residual statics estimation, made by itera-
tively choosing the best value for each shot and receiver static until a (local) power
maximum was attained. FEach trial was performed with a different random initializa-
tion of the shot and receiver statics. The stack power here is 29% short of the stack
power of the result obtained by simulated annealing, shown in Figure 4.4c. The diago-
nal appearance of the stack is due to a severe cycle-skipping problem.
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choice of T'; dependent on the difference between the greatest and least possible ener-
gies. In performing my early tests I observed that choosing high initial values of T
was unimportant: convergence consistently occurred near the same low T every time.
In using equation (4.1), I elected to retain the same gentle logarithmic decay as Geman
and Geman had used, but I additionally chose the constant kg such that T, decreased
very slowly from the first iteration onward. The result was a mild rate of cooling in
which T changed by less than 119% from the first to the last iteration. Thus T was

held nearly constant; this result suggested the constant-temperature approach used in

the field data example.

4.1.3 Results

Figures 4.4a-e illustrate the results obtained with the statics algorithm. Three
stages of the algorithm’s execution are depicted: the stack after 2410 iterations (4.4a);
after 3080 iterations (4.4b); and the final solution, after 4540 iterations (4.4c), which
closely resembles the desired solution in Figure 4.1b. Figure 4.4d shows the four com-
mon midpoint gathers from Figure 4.3a; the statics solution has now been applied to
them. Figure 4.4e is a graph of stack power versus iteration. Note that there is very
little change in power until after approximately 2300 iterations. After 3000 iterations,
the power sharply increases. By the time iteration 3080 was reached, the statics algo-
rithm had completed its most important work: solving for the shorter-wavelength stat-
ics, leaving only long-wavelength residuals. The longer wavelengths are the most
poorly resolved components of the solution; this is as true for other techniques (Taner
et al., 1974; Wiggins et al., 1976; Ronen and Claerbout, 1985) as it is here. By itera-
tion 4540 (the final solution), only a slight long-wavelength residual remains. Although
the fundamental ambiguity of long-wavelength statics and structure 1s observed here as
elsewhere, it is important to note that the structural discontinuity implied by the

artificial fault does not influence the solution.

The quality of the solution is measured by the objective function, stack power.
For comparison with results, the power of the input stack in Figure 4.3b is normalized
to 1. The final stack power for the solution in Figure 4.4¢ i1s 3.354. The known,
desired solution has a stack power of 3.399, so the computed solution is in error by
approximately 1.39%. The difference between the estimated statics and the true statics
is graphed in Figure 4.5. Note that, for both shots and receivers, the basic error occurs
as a slight kink about two-thirds along the line. The noise contamination for this test
was strong enough so that this long wavelength residual could not be resolved; other

tests (not shown) with higher signal-to-noise ratios more successfully resolved the long



wavelengths.

The opposite of annealing is “quenching”; i.e., setting T = 0, so that only ran-
dom perturbations that increase power are accepted. Efficient quenching can be
accomplished by iteratively scanning all possible values for each shot and receiver
static, and always choosing the shift that yields the greatest local stack power. This
technique is optimization by iterative improvement. Because iterative improvement
always finds the nearest local minimum, it is customary to perform several runs with
different starting positions (i.e., different initial values for the shot and receiver statics)
and to save the best result. Iran 100 such tests of iterative improvement on these syn-
thetic data; the best of these 100 results is shown in Figure 4.6. Computations for
these 100 runs consumed approximately the same time as that needed to obtain the
annealing result of Figure 4.4c. The stack power for the solution in Figure 4.6 is 2.378,
which is almost 30% less than the result obtained by simulating annealing. (The worst
of the 100 trials was short by almost 50%.) The diagonal appearance of this result is
due to a severe cycle-skipping problem, and is the visual manifestation of convergence
to a local minimum. Local minima such as the one illustrated here would also be the
expected result if simulated annealing were run with too low a value for temperature.
Local minima are thus not only suboptimal solutions, but they are also usually geologi-

cally implausible solutions.
4.2 FIELD DATA EXAMPLE

4.2.1 The data

The seismic section in Figure 4.7a (p. 52) is a 24-fold “raw” or “brute’ stack; this
stack was produced without any statics corrections. Figure 4.7b shows two representa-
tive CMP gathers. The data were collected with a 48-trace, split-spread cable in the
Wyoming Overthrust belt. The source was Vibroseis, with an 8-55 Hz sweep. The
data have undergone the following processing steps: (1) predictive deconvolution; (2)
bandpass filtering, from 8 to 35 Hz; (3) NMO corrections; and (4) automatic gain con-
trol. Stacking velocities were laterally invariant. No field statics corrections were
made. The cablelength extends over approximately 100 stacked traces (3350 m), which
is about 60% of the width of the section. Both ends of the line exhibit the usual roll-
on and roll-off, so the first and last 24 stacked traces are less than 24-fold.

Although it may not be obvious that these data suffer from a statics problem,
supporting evidence exists. Note that the strong, shallow reflection in the stack (Fig-

ure 4.7a) appears to arch downward from about 100 ms at the center of the section to
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about 600 ms at both sides. It will be evident later that this is the reflection from the
base of low-velocity fill. The gathers (Figure 4.7b) reveal the unusual character of the
reflection at approximately 3.5 s. Although the same velocity function was used to
correct for normal moveout in both gathers, CMP 34 shows the event dipping upward
with offset, whereas CMP 64 (only one-third of the cablelength away) shows the event
dipping downward. Furthermore, in the stack, this event exhibits gross discontinuities
that mirror the shallow, arched reflector—this consistency with depth is a good indica-

tion of near-surface velocity variations.

One could construct a model of the presumed shot and receiver statics, and then,
If necessary, input this model as the initial guess in a conventional, linearized algo-
rithm. Johnson et al. (1983) were able to manually construct such a model based solely
on a geologic interpretation of these data; from the model they then produced a suc-
cessful stack. A comparable result, obtained using only the Monte Carlo statics algo-
rithm, is discussed in §4.2.3. Before illustrating that result, however, I discuss the

choice of T and other processing parameters for these data.

4.2.2 Processing parameters and method

Statics estimation for this set of data was performed with the one-step heat-bath
method described in §3.3.3. Statics were estimated from normalized crosscorrelations
of the data between 2.9 and 3.9 s, the zone dominated by the prominent reflector at
approximately 3.5 s. Static shifts were constrained to fall within +160 ms, in 8 ms
(one-sample) increments; thus the crosscorrelations in equation (3.9) were performed
over 41 lags. Shot statics were estimated independently of receiver statics. The 85
source locations and 90 receiver locations yield a total of 175 free parameters. Because

each parameter may assume any of 41 values, there are 41'7® possible solutions.

As T have noted previously, choices for T appear to be data-dependent. In this
example, the primary objective is to mend the discontinuities on the left side of the
section between traces 20 and 80 (see Figure 4.7a). Because statics appear to have
caused a very large (approximately 200 ms) break, more than just an incremental
change in the apparent structure in the stack is needed. Thus the initial choice of T
must be high enough so that the statics are given the freedom to mend the deep
reflector. From a mathematical point of view, this requirement is equivalent to a state-
ment that the input stack (all statics equal zero) is already located near a sub-optimal
local minimum, and that the initial T must be high enough so that this minimum can
be escaped easily. The input stack is recognized as being near a local minimum

because the reflections already stack in well in isolated regions of the stack. In these
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regions, the input stack is locally satisfactory. When one views the stack globally, how-

ever, one sees that considerable changes are necessary to make the deep reflector con-

tinuous.

Once the algorithm causes solutions to depart from the region near the initial
minimum, T can then be quickly lowered to a minimum temperature, T ;. T i i
chosen by previous experimentation: it must be high enough so that local minima are
escaped, but low enough so that convergence can occur in the deepest minimum, or in
minima, that are nearly as deep. It is unlikely that the algorithm will return solutions
to the initial location (the input stack); because the method generates solutions x with
a frequency proportional to exp{-E (x)/T .}, deep minima are more probable than

the more shallow initial position.

The objective, then, is to approach equilibrium as rapidly as possible at a tem-
perature that is low enough to strongly favor the global solution, yet high enough to
ignore the overwhelming number of shallow minima. This goal assumes a simple model
in which the objective function contains a few very deep minima among a multitude of
shallow minima. Based on my experimentation, this appears to be a reasonable model
for data with large statics and moderate noise contamination; these conditions exist

both in this example and in the synthetic data.

One might think that it is inefficient to begin with a high T : statics are chosen
that significantly decrease the stack power, leading to the loss of all structure in the
data. However, if one were to begin instead at 7T, the approach to equilibrium
would be far slower because the algorithm would spend much time attempting to climb
out of the initial minimum. (In practice, this ascent may appear impossible.) By start-
ing at a high temperature, the algorithm begins at one of the highest locations on the
objective function. Although entrapment in a local minimum is still possible, the pro-

bability of entrapment is significantly lowered by not beginning near a local minimum.

Regardless of how T is chosen, the solution remains independent of the starting
position as long as the algorithm is run for enough iterations so that equilibrium is
attained. The algorithm would be most efficiently used, however, if one could begin
near the global minimum; if this were possible, the initial temperature could indeed be
low. This scheme would be analogous to the placement of a “seed” from which a “cry-
stal” could quickly grow. Further comments on the use of a seed are in the discussion

in 34.3.
The temperature function chosen for this example has the form
OlkTo, OlkT0>Tmin
T, =

T min > otherwise
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where T is the temperature for the k th iteration (one iteration includes one attempt
to change the value of each parameter), o = .99, Ty = .045, and T, — .0265. For
this choice of parameters, T, = T ;, after only 53 iterations. T, was chosen to
insure that the structure in the input stack would be destroyed quickly. In practice,
the specification of T requires just a few (if any) quick tests of only a few iterations
each. The choice of « is fairly arbitrary. Choosing T ;,, however, is not so simple; a
workable value is determined only after considerable experimentation. Before the
result discussed below was obtained, it was necessary to run 4 full-length test runs (of
about 1000 iterations each) with different values for T ;. If T, is too high, then
convergence will not occur within a reasonable number of iterations (or at all); if T,
is too low, then the algorithm is likely to converge to an obviously unacceptable local
minimum similar to the result in Figure 4.6. It appears thus far that the algorithm’s
sensitivity to T ., is substantial: differences of just a few per cent can lead to very dis-
similar results. In the example illustrated here, however, systematic experimentation

with a range of values yielded the correct T ;, without undue difficulty.

4.2.3 Results

Figures 4.8a-e depict the progress of the statics estimation algorithm at different
points in the iterative process. Each of these figures is a 24-fold stack performed after
corrections are made with the current estimate of the statics. Figure 4.8a displays the
stack after 5 iterations; one sees that Ty = .045 leads to immediate obliteration of all
spatial coherence in the stack. By iteration 53, T == T, , but after 1000 iterations
(Figure 4.8b) the stack still exhibits no improvement over the result in Figure 4.8a. By
iteration 1125, however, convergence begins; this stage is illustrated in Figure 4.8c.
The algorithm then rapidly descends into a minimum, as is evident in Figure 4.8d, the
stack after 1250 iterations. The algorithm was run for 2000 iterations. The stack with
the greatest power was achieved in iteration 1835, and is shown in Figure 4.8e. It
should be compared with Figure 4.7a, the stack of the input data. In Figure 4.8e, not
only has the deep reflector become continuous across most of the section, but also the
statics corrections have revealed steeply dipping events in the more shallow data.
(Gaps in these dipping events are the result of inaccurate stacking velocities.) There are
two apparent imperfections in Figure 4.8e, however. First, the dip of the deepest
reflector appears to have reversed, and second, the far right side of the same reflector
appears to be artificially discontinuous. Both of these shortcomings will be addressed

later in this section.
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FIG. 4.7a. 24-fold stack of data from the Wyomlng Overthrust belt; the stack is per-
formed prior to statics estimation. One time-variable stacking-velocity function was
used for the entire line. The data used for residual statics estimation are between 2.9
and 3.9 s. The strong reflections at the near surface are roughly indicative of the
near-surface velocity variations. The first and last 24 traces are underfold due to the
usual roll-on and roll-off.
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FIG. 4.7b. NMO-corrected common-midpoint gathers 34 and 64; the gathers are
displayed without statics corrections. Offset increases in each plot from the center out-
ward. Both gathers are corrected with the same velocity function. The near-surface
velocity anomalies have produced dipping structure in events that should be flat; this
effect is most evident in the data near 3.5 s. In gather 34, dip appears to bend upward

with offset. In gather 64, just one-third of a cablelength down the line, dip now
appears to bend downward with offset.
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FIG. 4.8c. Stack after 1125 iterations of the statics estimation algorithm. The faint
spatial coherence in the middle of the section shows that convergence is now beginning.
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FIG. 4.8d. Stack after 1250 iterations of the statics estimation algorithm. Conver-
gence 1s now almost complete; only at the ends of the line has the solution not con-
verged.
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FIG. 4.8e. Stack after 1835 iterations of the statics estimation algorithm. Of the 2000
iterations, this stack yielded the greatest stack power. This stack should be compared
with the stack of the input data in Figure 4.7a. The deep reflection Is now continuous
throughout much of the section. Moreover, this statics solution has uncovered steeply
dipping structure in the first 3 seconds of the data (outside the window used for com-
puting the crosscorrelation functions). Two imperfections are apparent, however.
First, the dip of the deep reflector appears to have reversed, and second, the extreme
right end of the line shows artificially discontinuous reflections.
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FIG. 4.9. Normalized stack power as a function of iteration number, for the example
illustrated in Figures 4.8a-e. Normalization is based on setting the input stack power
to 1. Power is computed within the estimation window, which extends from 2.9 to 3.9
s. Power initially decreases quickly to about .5. T decreases from .045 to .0265 during
the first 53 iterations; thereafter it remains constant. Convergence begins at approxi-
mately iteration 1000. A sharp increase in power occurs near iteration 1150; this rapid
change is analogous to abrupt changes in a system’s energy upon its crystallization.
Global convergence occurs after about 1400 iterations. The remaining 600 iterations
yield essentially similar stacks except for the behavior at the far right of the seismic
sections. The power of the stack displayed in Figure 4.8 is 1.553, the greatest power
attained in the 2000 iterations.

Figure 4.9 summarizes the results of the 2000 iterations in one graph; stack power
is plotted as a function of iteration. Stack power is computed only within the compu-
tation window (2.9-3.9 s), and the power of the input is normalized to one. Power
quickly decreases to about .5, and does not begin to rise until after 1000 iterations.
Beginning at approximately iteration 1150, power increases sharply; convergence finally
occurs by about iteration 1400. The stacks produced by the remaining iterations were
roughly equivalent except for the behavior at the far right side of the section, which
never became stable. The maximum stack power occurred in iteration 1835 (Figure

4.8¢), where the power is 1.553.

Figure 4.10 shows the two gathers shown in Figure 4.7b; statics corrections from
iteration 1835 have now been performed. In gather 34, the upward dips at far offsets

have now been flattened. Also, gather 64 has had its downward dips leveled.
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FIG. 4.10. The same two NMO-corrected common-midpoint gathers of Figure 4.7b,
now shown after statics corrections from iteration 1835 have been made.

Both show
substantial alignment after application of the statics solution.
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FIG. 4.11. The shot and receiver statics output by iteration 1835. Shots 17-20 and
shot 24 were skipped; these are plotted as zeroes. At the right end, statics are as large
as 160 ms, which was the upper bound. Examination of the stack in Figure 4.8e in
conjunction with these graphs suggests that the “true’” statics at the right end are
greater than 160 ms; this condition resulted in the artificial discontinuity in the deep
reflector in Figure 4.8e.

Figure 4.11 shows the estimates of the shot and receiver statics produced in itera-
tion 1835, the best of the 2000 iterations. The static shifts span the full allowed range
of +160 ms, and most of the variations are smooth. Examination of the stack in Fig-
ure 4.8¢ in conjunction with the graphs of shot and receiver statics reveals the cause of
the artificial discontinuity in the deep reflector at the right end. The ‘“‘true’ statics at
the right end of the line are apparently greater than the upper bound, which was 160
ms. The algorithm thus could find only the best available solution; this constraint
unfortunately resulted in a large mismatch at the end of the line. The magnitude of
this mistake is roughly indicative of the size of the statics being considered for the solu-

tion.

This error at the right side can be easily corrected. The Monte Carlo statics algo-
rithm was run again; this time the statics of Figure 4.11 were used as the starting
guess, and the temperature remained at T = T ;, = .0265 throughout. To allow the
estimation of larger statics, the upper bound was doubled to 320 ms, and the estima-
tion window was also doubled to extend from 2 to 4 s. After 250 iterations, the stack

in Figure 4.12 was produced. The deep reflector is now continuous throughout the
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FIG. 4.12. Stack produced after the Monte Carlo statics estimation algorithm was run
again, this time using the statics of Figure 4.11 as the starting guess. To allow the
estimation of larger statics, the upper bound was doubled to 320 ms, and the estima-
tion window was also doubled to extend from 2 to 4 s. This stack was produced after
250 iterations, in which ' = T ;, = .0265 throughout. Compare this result with the
stack in Figure 4.8e: the deep reflector is now continuous across the entire line, and the

more shallow reflections are stronger, especially in the region on the right between 2.0
and 2.5 s.
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FIG. 4.13. The shot and receiver statics used to produce the stack in Figure 4.12.
Statics are now as great as 256 ms; this high level supports the conclusion that the pre-
vious upper bound of 160 ms had been too small.
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section, and the more shallow reflections also show improved continuity on the right
side. Figure 4.13 shows the statics that were used to produce the stack in Figure 4.12.
Statics are now as large as 256 ms; this high level supports the conclusion that the

upper bound had previously been too small.

The dip reversal of the deep reflector must also be suspect. As discussed earlier
with regard to the synthetic data example, long-wavelength components of statics solu-
tions are nonunique; that is, different solutions can yield the same stack power. The
most obvious nonunique component is a simple shift (up or down) of all shot and
receiver statics by the same amount. This shift changes the timing of events, but the
stack power remains the same. A linear trend in the shot and receiver statics also can-
not be uniquely determined (see Taner et al., 1974; Wiggins et al., 1976; or the
elegantly simple derivation by Ronen and Claerbout, 1985). Thus, from the viewpoint
of statics estimation, the dip on a CMP stack is completely unresolved by the data.
The contribution from the linear trend can be removed, however, by fitting a regression
line to the average of the shot and receiver statics and then subtracting it (Ronen and
Claerbout, 1985). Figure 4.14 shows the stack produced by subtraction of the linear
trend, and I'igure 4.15 shows the corresponding shot and receiver statics. The prevail-

ing dip of the deep reflector now matches the input (Figure 4.7a) well. Note that the
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FIG. 4.14. Stack produced after the linear trend in the shot and receiver statics of Fig-
ure 4.13 was subtracted. Because the linear trend in the statics is fully unresolved by
the data, any prevailing dip on the stack is equally as good as any other dip. Elimina-
tion of the linear trend thus discards this nonuniquely determined component of the
solution. The prevailing dip on the stack now matches the dip on the input stack (Fig-
ure 4.7a) well. This result is taken as final solution: note the considerable differences in
quality between this stack and Figure 4.7a.
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FIG. 4.15. The statics of Figure 4.13, now shown after subtraction of the linear trend.
Note that the shape of both the shot and receiver statics is roughly opposite that of
the near-surface reflector seen on the input; this shape indicates that this reflection
occurred at the base of low-velocity fill.

statics in Figure 4.15 now extend only up to 120 ms. Also, the shape of the statics is
roughly opposite that of the near-surface reflector on the input (Figure 4.7a); this shape

suggests that this reflection occurred at the base of low-velocity fill.

For comparison with the results of the Monte Carlo algorithm, a test of statics
estimation by iterative improvement was run on the data of Figure 4.7a. The test used
processing parameters (except for T') identical to those used to generate the stack in
Figure 4.8¢. The result is shown in Figure 4.16; convergence was attained after only 13
iterations. All reflections have been enhanced, but the poor stack in the region
between traces 20 and 80 still remains. This “cycle-skipping” is most evident at about
3.5 s, where the reflections should be laterally continuous—compare this result with
Figures 4.8e, 4.12, and 4.14. Because the statics for these data are so large, many local
minima exist; thus iterative improvement fails because it finds only a nearby local

minimum. The stack power for this result is 1.395.
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FIG. 4.16. Stack after application of a statics estimated by iterative improvement. All
processing parameters (except T ) were identical to those used for the example in Fig-
ures 4.8a-e. Convergence occurred after only 13 iterations. This stack should be com-
pared with the solution obtained by simulated annealing with non-zero T, shown in
Figure 4.8e (and also Figures 4.12 and 4.14). Because iterative improvement converges
to a nearby extremum, cycle-skipping can be a problem. Cycle-skipping is evident in
the region near 3.5 s, which should exhibit a continuous reflector.
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4.3 DISCUSSION

Several interesting characteristics of the Monte Carlo statics algorithm emerge

from the examples illustrated in the previous two sections. I detail a few of these

features below.

Perhaps the most interesting result of these tests is the rapid, almost discontinu-
ous jumps in power that occurred at approximately iteration 1150 in the field data
example and iteration 3000 in the synthetic data example. Looking at the field data
stacks in Figures 4.8a-¢, one sees that this jump corresponds to a period of rapid
change in which the stack is transformed from almost total disorder to a reasonable
approximation of the final solution. This behavior is analogous to the sudden crystal
groupings that occur when a liquid approaches its freezing point, so the behavior may
be aptly labeled a critical phenomenon. In the field data example, however, there was
no obvious passage through a critical temperature T, (ie., the freezing point). I
instead chose a T ;; < T, and waited for the system to reach equilibrium. The sys-
tem eventually fell into the equivalent of a potential well. This abrupt transition

underscores the analogy to statistical mechanics and crystallization.

Carrying this analogy even further, one can foresee how the placement of a “‘seed”
would help the ““crystal” grow. This idea, indicated earlier in §4.2.2, is graphically dep-
icted in Figure 4.8c. The rapid increase in power beyond this point (1125 iterations)
was possible because the barest indication of a good stack had spontaneously formed.
If there were enough prior knowledge of the correct solution so that just a few statics
could be held constant during a run, then convergence to a high-stack-power solution
should be significantly faster. In practice, it might often be possible to hold some stat-
ics constant when a zone of large statics (i.e., a statics “bust”) is enclosed by data that
are relatively free of statics problems. The statics surrounding the poor region could
then be held to zero while the algorithm searched for the optimal statics in the inner
zone. The good stack in the surrounding region should propagate into the poor zone in

a way that would be analogous to the nucleation of a crystal.

In practice, Monte Carlo statics estimation is most efficiently used only to approx-
imate the best stack, not necessarily to find it. In both examples, each static was
allowed to be only an integral multiple of the sampling interval; thus the true optimal
(non-discretized) solution was surely missed. The best estimate from a Monte Carlo
statics algorithm should be used as the initial guess for a conventional, linearized tech-
nique (or, alternatively, T could be set to zero once convergence is obtained). Simu-

lated annealing does not replace conventional statics algorithms when they provide
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acceptable solutions, but this Monte Carlo method can be a useful tool when conven-

tional methods fail.

Because statics solutions are nonunique and the Monte Carlo approach typically
destroys the first guess, the final solution obtained by this method must be interpreted
carefully. Although simulated annealing can discriminate among minima of different
depths, it clearly cannot choose among minima of the same depth. More particularly,
the algorithm cannot resolve parameters that have little or no effect on the final result.
Unless otherwise constrained, the algorithm will settle into the first deep minimum it
finds, regardless of the magnitude of the nonunique contribution to the solution. Thus,
as illustrated by the field data example, dips can change considerably. One way to rec-
tify this problem is to force the poorly determined components of the solution to match
some prior notion of what the solution should be; this technique is demonstrated in
Figures 4.14 and 4.15, where the linear trend was removed. Another method would be

to filter out the nonunique components after each iteration (Ronen and Claerbout,
1985).

Solutions resulting from Monte Carlo statics estimation can be surprising: the
method is powerful enough to produce a virtually unpredictable change in the apparent
structure in an input stack. In fact, the Monte Carlo method can reveal structure
where no previous hint existed. Although the input stack in Figure 4.7a does show
clear reflection events, a much improved stack was actually obtained after passage
through complete disorder, as illustrated by Figures 4.8a and 4.8b. This improvement

attests to the power of the technique.

Aside from the problem of nonuniqueness, the reliability of the statics solution
can be measured by comparing the improvements inside the statics estimation window
with the possible improvements outside the window. In the field data example the two
improvements compare favorably: the new continuity in the deep reflector appears
below steeply dipping events that were not apparent before. Thus the shallow data act

as an independent confirmation of the result.



