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So you went and bought a vector computer

Stewart A. Levin

FROM THE MAILBOX

From: rick

Subject: Latest benchmark results convex vs vax

Fork (textbook fft) 5.2x Rick

Fft 7.0x Bill

Fft Singleton 62.5 Rick

stew’s fft (F) 3.2x Li  most time in I/O

diskfft (F) 5.5x Li

jon’s fft (F) 5x  Rick most loops couldn’t vectorize

From: convexw!jensen (Bill Jensen)
Subject: FFT

The message is that complex arithmetic CAN be slower than doing it with
reals on a convex. There are three reasons why I wrote this FFT the way
it is. The first reason is that the original Cooley-Tukey algorithm

that 1 was replacing was written this way. By replicating the algorithm,

I was able to check out the two FFTs side by side in order to make sure
mine was working properly.

The second reason has to do with performance. The C-1 is faster when it

is working with contiguous arrays. 1 surmised that by splitting the real

and the imaginary parts like I did, I would get better performance. 1 do

not know if this is the case, because I have not tested it. I should know

by the end of the day, though, because I am going to rewrite the assembler
FFT to follow the FORTRAN algorithm. This is something the compiler cannot
do, because it will always have to assume that complex numbers will be

exported to other routines.

The third reason is that the optimization in pass 2 to eliminate multiplies

would not be possible with complex arithmetic. Multiplying by (0.0, -1.0)
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would result in four multiplies and two additions. Someday, the compiler
might be able to optimize this.

From: convexw!jensen (Bill Jensen)
Subject: General FFT

I have updated fft512.f to generalize it for you. It is untested at this
time, but I could check it out after Monday. It can be found in
/mnt/stanford /generalfft.f . As written, it will do 8 point FFTs to
1024 point FFTs. Larger FFTs are easily accomplished just by changing
the parameter statement.

I am sorry I do not have time to check this out now. I am busy getting
the 512 pt assembler FFT to work.

P.S. I also removed the “funny” array declarations. However, I do
believe that declaring twi(256,3:9) is a legal F77 construct. I have seen
this in other compilers (Apollo and Data General).

From: Richard Ottolini <rick>
Subject: Interesting fft timing results:

These results are preliminary and shouldn’t be sent to Convex.
They need to be double checked for both speed and accuracy.

1024 pt complex ffts: (averaged over 1000)
6.5 ms/fft Convex (jensen; fc -O2)
25 ms/fft FPS (vector chained in groups of 32, including put/gets)
400 ms/fftVAX (jensen; {77 -O)
400 ms/fft VAX (seplib: clayton; cc)
880 ms/fft VAX (fork; f77 -O)

From: convexw!jensen (Bill Jensen)
Subject: FFT

In response to the issues raised in the READ_ME file:
1)  “confft.f” and “coeff.f” now work. 1 fixed several typos
and errors that were made in typing it in and converting it to

general form. In addition, I changed the logic in ‘“‘coeff.f”

that was rewritten to eliminate possible nonportable logical
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operations.

2)  The routines should work for any length of FFT from 8 points
to 1024 points. This feature is not thoroughly tested. At this
time the maximum size FFT is set to 1024 and is controlled by
the parameter line IN BOTH “confft.t” and ‘‘coeff.f”. These
parameters must be set properly for the FFT routines to work
properly. “len” must be the largest fft that is to be done.
“len2” must be “len” divided by two. “lenlg2” is log to the
base two of “len”, i.e. ‘“2**lenlg2 .eq. len”.

3)  The routines now provide the correct answer with one notable
difference! The output of the convex FFT is scaled by 32. from the
output of the “fork” FFT. 1 looked at your code and noticed that
the bit reversal logic scales all of the input values by
“sqrt (1./lw)” which is 32. (lw = 1024). 1 do not know why this
is there, since this is not part of a standard fft routine.

I did modify the code in “confft.f” to scale all of the inputs,

and, once that was done, the answers seemed to agree.

From: stew

Subject: compiler optimizations and vectorized FFT’s

I just read an article in the new journal ‘“Parallel Computing” published

by North-Holland entitled “FFT algorithms for vector computers”. This
article i1s clear and readable and contains some illustrative FORTRAN codes.
(V.1, 1984, p45-63, Paul N. Swartztrauber). 1 typed them into the computer
and compiled them on the convex in directory /mnt/stanford/ffts. T've
inserted the compiler’s vectorization comments in these sources and generated
the assembly code files also. Perhaps the most striking comments are in
stock.vect.f in which loop inversion is explicitly used to insure that

the inner loop is of length at least sqrt(IN). The compiler fully

vectorized the first, uninverted loop by inverting it and distributing it

(also thereby defeating the intent of explicit loop inversion). However

the following, manually inverted, loops were not fully vectorized! Looks

like more work is needed on the optimization logic.
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DISCUSSION

Swarztrauber, in the abovementioned article, lists six general factors which
influence performance of a vector machine and discusses several FFT algorithms
in light of them. These factors are

a) Pipeline start-up time

(
(
(c)
(d
(
(

)
b) Recurrences and computational dependencies
Instruction ordering and scheduling

)

Efficient data arrangement and access in memory
e) Vectorization by compilers

f) Selection of algorithm matched to architecture

He shows that classical FFT algorithms, mostly variations on the textbook,
Cooley-Tukey textbook algorithm (e.g. Appendix A or routine FORK in FGDP
p.12), run inefficiently on most vector computers for reasons (a) and (d): many
short loops accessing noncontiguous data. These factors are not critical on the
FPS because it contains special purpose hardware for bit-reverse addressing and
sine/cosine table lookup. Swarztrauber then presents sample codes for some
alternative FFT algorithms. I heartily recommend you read his article. In
Appendix A [I've included listings of several Fortran subroutines copied (with
corrections) from or based upon Swarztrauber’s paper. I've also included timings
for a 1024 point complex input vector.
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FFT’s.

Cooley-Tukey sort phase.
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APPENDIX A

SUBROUTINE CTSORT(M,C,WORK)
ORDER PHASE FOR THE COOLEY-TUKEY FFT

COMPLEX C(1),WORK(1)
N=2++M

DO 100 L=1M

NS=2+¥(L-1)

LS=N/(NS+NS)

CALL CTSRTI(LS,NS,C,WORK)
DO 100 I=1,N

C(I)=WORK(I)

CONTINUE

RETURN

END

SUBROUTINE CTSRT1(LS,NS,C,CH)
COMPLEX C(2,LS,NS),CH(LS,2,NS)
DO 200 J=1,NS

DO 200 I=1,LS

CH(I,1,J)=C(1,1,J)
CH(I,2,J)=C(2,1,7)

CONTINUE

RETURN

END

fles of the data.

SEP-44
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Cooley-Tukey combine phase.
putations are done in place.
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SUBROUTINE CTCMBN(IS,M,C)
COMBINE PHASE FOR THE COOLEY-TUKEY FFT

COMPLEX C(1)

N=2**M

DO 100 L=1M

LS=2+*(L-1)

NS=N/(LS+LS)

CALL CTCMBI(IS,LS,NS,C)

CONTINUE

RETURN

END

SUBROUTINE CTCMBI(IS,LS,NS,C)
COMPLEX OMEGA,OMEGK,WYK,C(LS,2,NS)
ANGLE—=FLOAT(IS)*4.*ATAN(1.)/FLOAT(LS)
OMEGA—CMPLX(COS(ANGLE),SIN(ANGLE))
OMEGK=1.

DO 300 I=1,LS

DO 200 J=1,NS

WYK=OMEGK*C(I,2,J)
C(1,1,1)=C(1,1,J)+WYK
C(1,2,J)=C(1,1,]}-WYK

CONTINUE

OMEGK=OMEGA*OMEGK

CONTINUE

RETURN

END

ally ordered output.
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SUBROUTINE GSCMBN(ISM,C)

GENTLEMAN-SANDE FFT COMBINE PHASE

QOO

COMPLEX C(1)
N=2**M
DO 100 L=1M
NS=2*+*(L-1)
LS=N/(NS+NS)
CALL GSCMBI(IS,LS,NS,C)
100 CONTINUE
RETURN
END
SUBROUTINE GSCMBI(IS,LS,NS,C)
COMPLEX OMEGA,OMEGK,WYK,C(LS,2,NS)
ANGLE=FLOAT(IS)*4. *ATAN(1.)/FLOAT(LS)
OMEGA—=CMPLX(COS(ANGLE),SIN(ANGLE))
OMEGK=1.
DO 300 1=1,LS
DO 200 J=1,NS
WYK=C(1,1,J)-C(I,2,J)
C(1,1,1)=C(1,1,1)+C(12,J)
C(1,2,J)=OMEGK*WYK
200 CONTINUE
OMEGK=OMEGA*OMEGK
300 CONTINUE
RETURN
END

FIG. 3.  Gentleman-Sande combine phase. 40 msec for 1024 complex input.
Starts with serially ordered input, yields bit-reverse ordered output.
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SUBROUTINE GSSORT(M,C,WORK)
ORDER PHASE FOR THE GENTLEMAN-SANDE FFT

COMPLEX C(1),WORK(1)
N=2+xM

DO 100 L—1M

LS=2+*(L-1)

NS=N/(LS+LS)

CALL GSSRT1(LS,NS,C,WORK)
DO 100 I=1,N

C(I)=WORK(I)

CONTINUE

RETURN

END

SUBROUTINE GSSRT1(LS,NS,C,CH)
COMPLEX C(LS,2,NS),CH(2,LS,NS)
DO 200 J=1,NS

DO 200 I=1,LS

CH(1,1,J)=C(1,1,J)
CH(2,1,J)=C(1,2,J)

CONTINUE

RETURN

END

Gentleman-Sande sort phase. 24 msec for 1024 complex input. Input

i1s bit-reverse ordered, output is serially ordered.
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SUBROUTINE PSORT(M,C,WORK)

ORDER PHASE FOR THE PEASE FFT

Qo

COMPLEX C(1),WORK(1)
N=2++M
DO 100 L=1M
NS=2+*(L-1)
LS=N/(NS+NS)
CALL PSRT1(LS,NS,C,WORK)
DO 100 I=1,N
C(I)=WORK(I)
100 CONTINUE
RETURN
END
SUBROUTINE PSRTI(LS,NS,C,CH)
COMPLEX C(NS,2,LS),CH(2,NS,LS)
DO 200 J=1,NS
DO 200 I=1,LS
CH(1,J,1)=C(J,1,])
CH(2,J,1)=C(J,2,])
200 CONTINUE
RETURN
END

FIG. 5. Pease sort phase. 23 msec for 1024 complex input. Starts with seri-
ally ordered input. Loop inversion reduces this to 7 msec.
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SUBROUTINE PCMBN(IS,M,C,WORK)
COMBINE PHASE FOR THE PEASE FFT

COMPLEX C(1),WORK(1)

N=2**M

DO 100 L=1M

LS=2+*(L-1)

NS=N/(LS-+LS)

CALL PCMBI(IS,LS,NS,C,WORK)

DO 100 I=1,N

C(I)=WORK(I)

CONTINUE

RETURN

END

SUBROUTINE PCMBI(IS,LS,NS,C,CH)
COMPLEX OMEGA,OMEGK, WYK,C(2,NS,LS),CH(NS,LS,2)
ANGLE=FLOAT(IS)*4.*ATAN(1.)/FLOAT(LS)
OMEGA=CMPLX(COS(ANGLE),SIN(ANGLE))
OMEGK=T1.

DO 200 I=1,LS

DO 100 J=1,NS

WYK=OMEGK*C(2,J,I)
CH(J,1,1)=C(1,J,)+WYK
CH(J,1,2)=C(1,J,]-WYK

CONTINUE

OMEGK=OMEGA*OMEGK

CONTINUE

RETURN

END

Pease combine phase. Double subscripted. 34 msec for 1024 complex
Follows sort phase.
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SUBROUTINE CANGLE(IS,N,NS2,OMEGK)

CANGLE INITIALIZES THE TRIGONOMETRIC TABLES FOR
THE PEASE FFT ALGORITHM

oJoJoJo!

COMPLEX OMEGK(NS2,M)
N=2%*M
DO 100 L=1M
LS=2+*(L-1)
NS=N/(LS+LS)
CALL INITP1(IS,LS,NS,OMEGK(1,L))
100 CONTINUE
RETURN
END
SUBROUTINE INITP1(IS,LS,NS,OMEGK)
COMPLEX OMEGA,OMEGK(NS,LS)
ANGLE=FLOAT(IS)*4.*ATAN(L.)/FLOAT(LS)
OMEGA=CMPLX(COS(ANGLE),SIN(ANGLE))
OMEGH=1.
DO 200 I=1,LS
DO 300 J=1,NS
OMEGK(J,])=OMEGH
300 CONTINUE
OMEGH=OMEGA*OMEGH
200 CONTINUE
RETURN
END

FIG. 7. Long-vector Pease FFT twiddle table generation. Less than 0.1 msec
for 1024 complex input. Uses 1/2 N log2 N storage.
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SUBROUTINE PCMBNL(M,C,WORK,NS2,OMEGK)

QOO

COMBINE PHASE FOR LONG LOOP PEASE FFT; NS2 = 2**(M-1)

COMPLEX C(1),WORK(1),OMEGK(NS2,M)
N=2%*M
DO 100 L=1M
CALL PCMBLI(NS2,0MEGK(1,L),C,WORK)
DO 100 I=1N
C(I)=WORK(I)

100 CONTINUE
RETURN
END
SUBROUTINE PCMBL1(NS2,0MEGK,C,CH)
COMPLEX C(2,NS2),CH(NS2,2),OMEGK(1), WYK
DO 200 JI=1,NS2
WYK=OMEGK(JI)*C(2,J1)
CH(JI,1)=C(1,JI}+ WYK
CH(J1,2)=C(1,J1)- WYK

200 CONTINUE
RETURN
END

FIG. 8. Long-vector Pease FFT combine phase. Single subscripted. 0.5 msec
for 1024 complex input.
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SUBROUTINE STOCK(IS,M,C,WORK)

THE STOCKHAM AUTO-SORT FFT

oXolo)

COMPLEX C(1),WORK(1)
N=2+*¥M
DO 100 L=1M
LS=2**(L-1)
NS=N/(LS+LS)
CALL STOCKI(IS,LS,NS,C,WORK)
DO 100 I=1,N
C(I)=WORK(I)

100 CONTINUE
RETURN
END
SUBROUTINE STOCK1(IS,LS,NS,C,CH)
COMPLEX OMEGA,OMEGK, WYK,C(NS 2,LS),CH(NS,LS,2)
ANGLE=FLOAT(IS)*4.*ATAN(1.)/FLOAT(LS)
OMEGA=CMPLX(COS(ANGLE),SIN(ANGLE))
DO 200 J=1,NS
OMEGK=1.
DO 200 1=1,LS
WYK=OMEGK*C(J,2,])
CH(J,1,1)=C(J,1,)+WYK
CH(J,1,2)=C(J,1,])-WYK
OMEGK=OMEGA*OMEGK

200 CONTINUE
RETURN
END

FIG. 9. Stockham autosort FFT. 34 msec for 1024 complex input. Starts
with serially ordered input, yields serially ordered output.
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SUBROUTINE STOCK(IS,M,C,WORK)
THE STOCKHAM AUTO-SORT FFT WITH LOOP INVERSION

COMPLEX C(1),WORK(1)

N=2++M

DO 100 L=1M

LS=2**(L-1)

NS==N/(LS+LS)

CALL ‘STOCK1(IS,LS,NS,C,WORK)

DO 100 I=1,N

C(I)=WORK(I)

CONTINUE

RETURN

END

SUBROUTINE STOCKI(IS,LS,NS,C,CH)
COMPLEX OMEGA OMEGK, WYK,C(NS,2,LS),CH(NS,LS,2)
ANGLE=FLOAT(IS)*4.*ATAN(1.)/FLOAT(LS)
OMEGA=CMPLX(COS(ANGLE),SIN(ANGLE))
IF(LS.LT.NS)GOTO 300

C$DIR SCALAR

200

300

DO 200 J—1,NS
OMEGK=1.

DO 200 I=1,LS
WYK=OMEGK*C(J,2,])
CH(J,1,1)=C(J,1,)+WYK
CH(J,1,2)=C(J,1,])-WYK
OMEGK=OMEGA*OMEGK
CONTINUE

RETURN

OMEGK=1.

C$DIR SCALAR

500

400

FIG. 10.
plex input.

DO 400 I=1LS

DO 500 J=1NS
WYK=OMEGK*C(J,2,])
CH(J,1,1)=C(J,1, )+ WYK
CH(J,12)=C(J,1,1-WYK
CONTINUE
OMEGK=OMEGA*OMEGK
CONTINUE

RETURN

END

Stockham autosort FF'T with loop inversion. 22 msec for 1024 com-

Compiler directives were used to enforce the manual inversion.
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APPENDIX B

Convex execution times for the subroutines listed in Appendix A. All times are
given in milliseconds per 1024 complex input vector. Fortran compilations were
done with full vectorizing optimization. These times are for purposes of illustra-
tion; improvement is possible. In particular the sort routines might profitably
be replaced by scatter-gather with precomputed indices. Also Swarztrauber rem-
inds us that sorting is not needed when using FFT’s for operations such as fast

convolution where the user is not interested in seeing data in the frequency

domain.

Algorithm Sort  Combine Total
Cooley-Tukey 25 40 65
CT/loop invert 25 18 43
Gentleman-Sande 24 40 64
Pease 23 34 57
Pease/long vec 23 5 24

7 + loop inv 7 5 8
Stockham 34

7 4+ loop inv 22
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MEMORANDUM

TO:  Publisher, The Journal of trreproducible Results
P.O.Box 234
Chicago Heights, Ill. 60411
FROM: Dr. David M. Dean
Biology Department
University of South Alabama
Mobile, Ala. 36688
COPY: Dr. RJ. Beyers, Chairman, Biology Department
Dr. W.W. Kaempfer, Dean, Arts and Sciences
RE: Memoranda

it has occurred to me that the University runs entirely on memoranda, and if | spent as much time writing publications as 1 do
memoranda, my vita would be huge. The obvious solution is to initiate a scientific journal that publishes memoranda.

J.A.M., the Journal of Academic Memoranda is hereby proposed to solve the problem of publish or perish. | have appointed
myself editor and am very excited to announce to you that we will publish, in the first issue of ].A.M., a monograph of over seven
years of memoranda from David M. Dean to various academic departments and personnel at U.S.A..

Unfortunately, we at the Journal have received the sad news that due to other commitments, our current editor will retire after
the next issue. The staff at the Journal is actively seeking a new editor.

COMMUNICATIONS

The wonders of microcomputers and the capabilities of word processing and photocopying of documents have enabled rapid written communications even in
emergency situations. Forms can be stored in the computer files, rapidly recalled and blanks filled in to generate memos immediately. Multiple copies can then be
made on photo copying equipment and copies rapidly distributed. An example of a memo on file on floppy disc is reproduced below.

To: All Laboratory Personnel EASTON HOSPITAL DATE: -
From: W.A. Harada, M.D. Department of Pathology TIME:____
Subject: FIRE!

Priority: Urgent

1. It has been brought to my attention that a fire is raging in the section of the laboratory.

2. All section supervisors will immediately review Laboratory Safety Manual, Section 3, FIRE, with personnel under their
supervision.

3. Personnel previously assigned will deploy the CONFLAGRATION ATTENUATING APPARATUS from the usual wall storage
devices and direct the nozzles in the general direction of the offending facilities.

4. Turn off all instruments including the LABORATORY BREWING APPARATUS in the Coffee Room.
5. Personnel not involved with suppressing the conflagration will abandon the premises shouting ““FIRE” with maximum decibels.

6. Telephone the fire department. If there is no answer call 253-6304 (DUNKIN’ DONUTS) where they probably are congregated at
this hour.

7. Section supervisors will reply in writing acknowledgement of this memo through usual channels.

W.A. Harada
Easton. PA

cc: Administration
Engineering
Telephone Switchboard



