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Decomposition by Conjugate Gradients
Jon F. Claerbout

ABSTRACT

By means of conjugate gradients, a field profile is decomposed into frequency com-

ponents.

INTRODUCTION

One way to decompose a seismogram into {requency components is to put the
seismogram through a bank of narrow-band filters. The trouble with this way is that
the sum of the outputs of the filters would be very unlikely to sum to the original data.
One way for the filter outputs to sum to the input would be for the narrow-band filters

to be a carefully chosen family of sinc functions.

Another way to decompose a function is the decomposition filter pairs in IEI page
122-124. These filters have 6db cutoffs. But they can be compounded in various ways.
I have put some such decompositions on previous SEP video tapes. Unfortunately I

never found an appealing systematic analysis.

Still another way to decompose a seismogram into frequency components is to solve
an underdetermined inverse problem. Given any bank of filters, say F;, we can find the
inputs, say z;(¢), such that the outputs sum to our given data, say d(¢). The filters

may be bandpass filters with spectral overlap.

Frequency decomposition is just one of many types of decomposition. Data can be
decomposed by other characteristics such as dip or velocity. This study takes up decom-
position by frequency components, but it is also a prototype for other decompositions

such as those of Thorson and Harlan.
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DECOMPOSITION CONCEPTS

For theoretical analysis let us consider a two component decomposition. The pro-
gram to be developed will be generalized to multicomponents. We have the constraint

equation:
d = Fiz;+Fy1, (1)

Equation (1) is underdetermined. One solution is to set z,=0 and solve for z;.

Another solution would do the reverse.

Quadratic examples

The solution of an underdetermined problem can be made unique by minimizing

some quadratic, for example:
Ey = Jay|®+ 2,2 (2)

Since (2) is just one of many functions that could be minimized we need to consider
some of the various possibilities, and the answers they would lead to. For example, we

could minimize
Er = |Fyaz,|*+ |Fy2,]? (3)

subject to the constraint (1). To see the answer to the minimization (1), let y;, = F; z; .
The data gets divided into two halves, y; = d /2 and y,= d /2. This is not a very
interesting decomposition. The two terms in (2) can be weighted arbitrarily. Weighting
one term more than the other serves to push more energy from one term to the other.
Likewise, the weighting could be frequency dependent (as (3) is). So you see, you really
choose the answer by chosing the weights. It would be nice to use probability or parsi-

mony concepts to be able to chose a decomposition that is somehow “best’’.

Pattern recognition inherent to L,

As we have seen, the minimization of quadratic functions tends to distribute energy
uniformly among its available places. This is not the case for the minimization of sums
of absolute values. In some cases the absolute value minimizations almost magically give

the “human” answer. I have devised the following illustration: Consider the decomposi-

[}g] = B]xﬁ“ [(2)]%+ [_ll]xs (4)

tion
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Before you look at any mathematics, think about what numerical choice you would
like for z |, 25, and z 5.

Minimization of z 2 +z¢ + 24

tends to smear the energy among the z; as uni-
formly as the constraint (4) will allow. The methods in FGDP show this answer to be
(CE L2 .’173) - (7) 4, '3)'

Minimizing the sum of absolute values
Ey = Jai|+]zo|+]23] (5)

yields the answer (2, 24, z3) = (10, 1, 0). This answer fits my intuition better. There
i1s no prejudice against one component absorbing most of the data. The poorest fitting

component is rejected entirely.

Best weights

We may prefer absolute-value optimizations over quadratic optimizations, but we
have no techniques for solving absolute-value optimizations with a million unknowns.
With the conjugate gradient technique we can often get usable solutions of weighted
quadratic optimizations. An absolute value is the same as a square divided by an abso-
lute value. So with luck, we may be able to introduce appropriate weights to get a qua-

dratic solution to look like an absolute value solution.

There are two different philosophies on what to minimize. Suppose that some sta-
tistical analysis tells you that the matrix M is the inverse of the covariance matrix of
2T z. If you don’t know anything about crosscovariance, then you take the matrix M
to be diagonal. One philosophy is to minimize the dimensionless quantity z* M z. The
other philosophy is to use the square root of M, because it is more like the L norm

problem.

DECOMPOSITION EXAMPLE

A well known way to deal with constraints is to use a penalty function. So we set

0 MO z,
[0] ~~ 0 )\21‘ [xz] (6)
d

up the regression:

Fy Fy

In the limit X\; = Xy — O the regression (6) minimizes (2) or (5) subject to the con-
straints (1). The regression can be done by the method of the paper “Conjugate Gra-

dients for Beginners” found elsewhere in this report.
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FIG. 1. Time domain response and frequency domain response of filter of equation (7)
for values of p; = -2, .1, .35, .6, .8.

For our present example the matrix F' is a filter matrix. (See Claerbout ‘“What is

.."). In this trial the filter will be the recursive filter given in Z-transform notation by
3
1+ Pi A
F. — |- TFf2 7

This filter 1s a leaky triple integrator. So the time domain response is something like

£2e ! 3/2 Plots are

and the frequency domain response is something like 1/(w?+3;)
shown in figure 1. The filters appear to form a reasonable set of ‘‘basis functions” to use
to decompose a seismogram. These basis functions, however, are clearly far from being

orthogonal.

A field profile (Yilmaz and Cumro #32) was selected because of its broad spectral
band. Linear moveout was performed with a velocity of 3 km/s. This profile is shown
in figure 2. Several prominent head waves are over moved out. Figure 2 also shows the
residual after a few descent steps. Figure 3 shows the F; z; for various p;. Figure 4

shows the 2; for various p; .
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CONCLUSIONS

There are a great number of loose ends. I am only writing this up because of the
progress report deadline. Personally I found it rewarding only because it was the first
time [ solved an optimization problem with 400X 48X5 unknowns. I was planning to
include my program for its tutorial value, but after studying the results I decided that

this frequency decomposition had no apparent practical utility, so I decided not to.
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