161

Conjugate Gradients for Beginners
Jon F. Claerbout

ABSTRACT

The conjugate-gradient method is a general purpose simultaneous equation solving
method ideal for geophysical inversion and imaging. A simple form of the algorithm

iteratively searches the plane of the gradient and the previous step.

INTRODUCTION

The solution time for simultaneous linear equations grows cubically with the
number of unknowns. For equations with hundreds of unknowns the solutions require
minutes to hours. What can we do about geophysical problems with unknowns number-
ing in the millions? The number of unknowns somehow must be reduced by theoretical
means, or else we must turn to numerical approximation methods. A numerical tech-

nique known as the conjugate-gradient method provides good approximations.

The conjugate-gradient method is an all-purpose optimizer and simultaneous equa-
tion solver. It is useful for systems of arbitrarily high order because its iterations can be
interrupted at any stage and the partial result is an approximation that is often useful.
Like most simultaneous equation solvers, the exact answer (assuming exact arithmetic) is

attained in a finite number of steps.

The conjugate-gradient method is really a family of methods. There are perhaps a
dozen or more forms of the conjugate-gradient algorithm. The various methods differ in
treatment of underdetermined systems, accuracy in treating ill conditioned systems,
space requirements, and numbers of dot products. Conjugate-gradient methods are an
active area of computer science research. A popular program by Michael Saunders is 625
lines. My plan here is to present the geometrical concepts and a one-page program. The

program should handle most practical cases. Since you will understand the one-page

SEP-44

Claerbout 162 Conjugate gradients

program, it will be convenient for alterations such as making snapshots of the residual

during the descent.

CHOICE OF DIRECTION

Any collection of search lines can be used for function minimization. Even if the
lines are random, the descent can reach the desired extremum because if the value does
not decrease when moving one way along the line, it almost certainly decreases when

moving the other way.

Why steepest descent is a slow way to go

Before we can understand why the conjugate-gradient method is so fast, we need to
see why the steepest descent method is so slow. Visualize a contour map of a moun-
tainous terrane. The gradient is perpendicular to the contours. Contours and gradients
are curved lines. In the steepest descent method you start at a point where you com-
pute the gradient direction at that point. Then you begin a straight line descent in that
direction. Eventually the gradient direction probably curves away from your direction
of travel, but you continue on your straight line until you have stopped descending and
are about to ascend. There you compute another gradient vector, turn, and descend

again and again.

What could be wrong with such a direct strategy? The problem centers at the
stopping locations. The stops occur where the descent direction becomes parallel to the
contour lines. If the descent line were not parallel to the contour lines then further des-
cent would be possible. So after each stop, you turn 90° from parallel to perpendicular
to the local contour line for the next descent. Suppose the line from where you are to
the absolute minimum requires you to make a 45° turn. Such a turn can never be made.
Instead of moving like a rain drop down the centerline of a rain gutter, you move a fine-
toothed zigzag path crossing and recrossing the centerline. The gentler the slope of the

rain gutter, the finer the teeth on the zigzag path.

Chosing the distance to the minimum is called line search. For a quadratic func-
tion the minimum point can be found analytically. Consider minimizing the dot product
(r—ag) - (r—ag) where r is a previous residual, ¢ is a descent direction, and « is
the distance to be determined. Set to zero the derivative of the dot product with respect
to «. This gives aa=(r-¢g)/(g9).

From the rain gutter example you see the problem of steepest descent is that you
overshoot the centerline before stopping. If you must use the steepest decent method, it

seems you should make one steepest descent step. After that you should undershoot the

SEP-44

Claerbout 163 Conjugate gradients

local minimum, say by 2/3 of the distance. Conventional wisdom is to overshoot all

steps by about 3/2.

CONJUGATE GRADIENT

In the conjugate-gradient method a line is not searched. Instead a plane is
searched. A plane is made from an arbitrary linear combination of two vectors. Take
one vector to be the gradient vector ¢. Take the other vector to be the previous des-
cent step vector, say s=uz;-z;_;. Instead of o g we need a linear combination, say
a g + #s. For minimizing quadratic functions the plane search requires only the solu-
tion of a two-by-two set of linear equations for « and (. The equations will be
specified along with the program. (For nonquadratic functions a plane search is con-

sidered intractable, whereas a line search proceeds by bisection).

Magic

There are a number of properties of the conjugate-gradient approach that I haven’t
explained because I don’t know any simple explanation. Luenburger’s book is a good
place to look for formal explanations of this magic. (His book also provides other forms

of the conjugate-gradient algorithm). Known properties are:

1. The conjugate-gradient descent method gets the exact answer (assuming exact

arithmetic) in exactly n descent steps, where n is the number of unknowns.

2. Since 1t is helpful to use the previous step, you might wonder why not use the pre-
vious two steps, after all, it is not hard to solve a three-by-three set of simultaneous
linear equations. It turns out that the third direction would do you no good. The

distance moved on the extra direction would be zero.

Conjugate-gradient theory for programmers

Let us minimize the sum of the squares of the components of the residual vector

residual = data space - transform model space (1a)

R = Y| - A [zl (1b)

The solution z is obtained in steps s;.

T = 81+ So+s3+ - (2)

SEP-44

Claerbout 164 Conjugate gradients

Fourier transformed variables are often capitalized. Here we will let vectors transformed

by the A matrix be capitalized.

X = Azx (3a)
Gi = Ay, (3¢)

Obviously a linear combination in solution space, say s-+g, corresponds to S+G in

the conjugate space. The residual is
R = Y-Az = Y -X (4)
The last stage of each iteration is to update the solution and the residual.

solution update: T —2x +s

residual update: R —~R-S5

The gradient ¢ is a vector of length of z. One such vector is
g = ATR = gradient (5a)
G = Ag = conjugate gradient (5b)

To see what ¢ is the gradient of, note that

9
ozx”

(Y'-2"A"(Y -Az) = A'R (6)
In dot product notation, the plane spanned by the gradient and the previous step vector
is searched when we minimize with respect to o and B the quadratic:

F = (R-aG-BS) (R-aG-BS) (7)

Differentiating yields the two simultaneous equations. First differentiate (7) with respect

to «. Then differentiate (7) with respect to .
0 = G (R-aG-p6S) (8a)
0 = S - (R-aG-pS) (8b)

You are ready to tackle the program.

SEP-44

Claerbout 165 Conjugate gradients

PROGRAM
minimize res(m) = y(m) - aaa(m,n) * x(n) by conjugate gradients.
subroutine cg(n, X, g, s, m, y, res, gg, ss, aaa, niter)

integer i, j, n, m, iter, niter
real x(n), y(m), res(m), aaa(m,n)

real g(n), s(n), gg(m), ss(m) # space vectors
real dot, sds, gdg, gds, determ, gdr, sdr, alfa, beta
doi=1,n

x(i) = 0. # clear solution
doi=1,m

res(i) == y(i) # load the residual vector
do iter = 0, niter {

doj=1,n{

g(j) = 0. # g = residual * AT = grad

doi=1m
8(J) = 8(j) + res(i) * aaa(i,))

doi=1m {
gg(i) = 0. # gg = A * g = conjugate gradient
doj =1,
gg(l) = gg(i) + aaa(i,j) * g(j)
if(iter == 0) { # one step of steepest descent
alfa = dot(m,gg,res) / dot{m,gg,gg)
beta = 0.
else { # search plane by solving 2-by-2

gdg = dot(m,gg,g8) # G- (R-Ga-Sp) =0
sds == dot(m,ss,;ss) # S - (R-Ga-SpB) =0
gds = dot(m,gg,ss)

determ = gdg * sds - gds * gds + 1.e-30

gdr = dot(m,gg,res)

sdr = dot(m,ss,res)

alfa = (sds * gdr - gds * sdr) / determ

beta = (-gds * gdr + gdg * sdr) / determ

doi=1,n # s = model step
s(i) = alfa * g(i) + beta * s(i)

doi=1m # ss == conjugate
ss(i) = alfa * gg(i) + beta * ss(i)

doi=1,n # update solution
x(i) = x(1) + s(i)

doi=1m # update residual

res(i) = res(i) - ss(i)

return; end

SEP-44

Claerbout

real function dot(n, x, y)
integer 1, n
real val, x(n), y(n)
val = 0.
doi=1,n
val = val + x(i) * y(i)
dot = val
return; end

166

EXAMPLE

y transpose

3.00 3.00 5.00 7.00 9.00

A transpose

1.00 1.00 1.00 1.00 1.00
1.00 2.00 3.00 4.00 5.00
1.00 0.00 1.00 0.00 1.00
0.00 0.00 0.00 1.00 1.00

for iter == 0, 4

x 0.43457383 1.56124675 0.27362058
res 0.73055887 -0.55706739 -0.39193439
x 0.51313990 1.38677311 0.87905097
res 0.22103608 -0.28668615 -0.55250990
x 0.39144850 1.24044561 1.08974123
res 0.27836478 0.12766024 -0.20252618
x 1.00001717 1.00006616 1.00001156
res -0.00009474 -0.00014952 -0.00022683
x 0.99999994 1.00000000 1.00000036
res -0.00000013 -0.00000003 0.00000007

0.25752524
0.06291389 0.22804642
0.56870568
0.37106201 0.10523783
1.46199620
0.18477297 -0.14541389
2.00000978

-0.00029133 -0.00036907

2.00000000
0.00000018 -0.00000015

REFERENCES
Luenberger, D. G., 1973, Introduction to linear and nonlinear programming: Addison-

Wesley.

Conjugate gradients

Paige, C.C., and Saunders, M.A., 1982, LSQR: an algorithm for sparse linear equations
and sparse least squares: ACM Transactions on Mathematical Software, 8, 43-71.

Paige, C.C., and Saunders, M.A., 1982, Algorithm 583, LSQR: sparse linear equations
and least squares problems: ACM Transactions on Mathematical Software, 8, 195-

209.

SEP-44

