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Choice of parameters for tT deconvolution
Clement Kostov and Jon Claerbout

ABSTRACT

The relation between simultaneous t7 deconvolution, presented by Claerbout in
SEP-42, and iterative deconvolution in the t- and 7~domains is illustrated geometrically.
One generalization of the t7 convolutional model which accounts for separate reverbera-
tions at shot and geophone locations was implemented. The increase in the number of

filter coefficients did not improve the results of the deconvolution.

INTRODUCTION

In “Deconvolution essays” (SEP-41) Claerbout pointed out that deconvolution is
almed at compensating for shot waveform and near surface reverberation. Successive
shot pulses (“bubbles”) create parallel events on a shot gather (t-domain), while rever-
beration multiples or peglegs become parallel to primaries only after normal moveout
correction (~-domain refers below to normal moveout and spherical divergence corrected
gathers). The effect of offset on multiple events is illustrated with a simple travel time
diagram in SEP-41.

The distinctive patterns of bubble or reverberation multiples in the t- and =
domains can be used to suppress these multiples by predictive deconvolution. The
straightforward process of t-decon followed by 7-decon is not theoretically satisfactory,
since it fails the “repetition test” defined in SEP-41. The repetition test requires that
deconvolution does not modify an already deconvolved gather. In mathematical terms
the deconvolution operator should be equal to its square. Linear operators having this
property are called projections. The predictive t-decon and 7-decon, defined below as

regressions, are projections; their product, however, is not a projection.
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An alternative approach, based on a forward convolutional model which includes
“bubble” and reverberation multiples was presented by Claerbout in SEP-42. According
to that model, a single regression system is set for the simultaneous estimation of “bub-
ble” and reverberation filters. The result of the simultaneous t~deconvolution is identi-
cal to that obtained by an infinite iteration of t-decon followed by 7decon. Another ori-
ginal feature of simultaneous t7-decon is that it solves the regression equation by conju-
gate gradients, without having to set the normal equations. Simultaneous tr-decon was
applied to several data sets and results for a marine profile from Canada (Yilmaz and
Cumro, 1983) are shown in SEP-42. Somewhat disappointingly, t~deconvolution did not

produce perceptibly better results than simple 7~deconvolution.
REGRESSION MODELS

Orthogonal projections

In this section we present general properties of regression models which apply to
the problem of deconvolution as discussed below. In order to simplify the notations a

model with only two regression variables is considered:
¥y =~ a +br; for 1< <N
or, In vector notation:

Y~al+bX (1)

In equation (1), Y, 1 and X are given vectors of length N, and @ and b are

scalars to be determined. The vector of residuals E is:

E=Y-al1-bX

The optimal regression coeflicients ¢ and b are found by minimizing the squared
norm of the residuals, E' E , thus defining a vector ¥ = 4 1 + 5 X which is “closest” to
the vector Y in the plane spanned by 1 and X. The residuals E = Y — Y are orthogo-
nal to the plane spanned by 1 and X and the mapping P, such that P(Y) = Y is an
orthogonal projection onto that plane (see Figure 1). Vectors in the projection plane are

mapped into themselves, therefore a projection operator is equal to its square,

PoP = P.
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FIG. 1. The vectors 1 and X span a plane. The vector Y, solution of the regression
equation (1), is the orthogonal projection of Y on that plane. The vector of residuals E
is orthogonal to the projection plane.

Simultaneous versus iterative regression

Assume that instead of solving the regression equation (1) simultaneously for a and
b, we decide to solve first a regression equation for a, then another one for &, then
again one for a, etc.. Regression for a can be represented as an orthogonal projection
P, mapping onto the space spanned by the vector 1. Similarly regression for b Iis
represented by an orthogonal projection P, mapping onto the space spanned by X. The
product P ;0 P, is not a projection in general, since it is not equal to its square. However
an infinite product of terms (P jo P,) does define a projection equal to the projection P
representing the simultaneous regression for a and . A geometrical illustration of this
property is given in Figure 2. Figure 2 indicates that the solution of the iterative regres-
sion process and the simultaneous regression agree after an infinite number of iterations,

except in two important particular cases when convergence requires only one iteration:
(1) for orthogonal regression variables 1 and X, that is 1 X = 0;

(2) for parallel regression variables, that is X = al.
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A convenient way to assess the orthogonality of 1 and X is by comparing their
scalar product 1'X to X'X and 1°1. These products appear in the left-hand side
matrix of the normal equations (Luenberger, 1968), also called the correlation matrix.
For the regression system (1) the correlation matrix is:

(1 X (1X>=[§{,11 ;(’f(] @)

When two regression variables are parallel, the number of unknown regression
coeflicients can be decreased without changing the result of the regression by dropping

one of the variables.
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-
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FIG. 2. In a two-dimensional space the vectors 1, X and Y are coplanar, hence
Y = a1+ bX and the regression residuals are zero (point O ). The sequence of residu-
als £ (projection of Y on the orthogonal of 1), E, (projection of Y on the orthogonal
of X) , E 3 (projection of Y on the orthogonal of 1 again), etc. , converges to O. When
1 and X are orthogonal or parallel convergence is attained in one step.

Linear transformation of the regression variables

As mentioned in SEP-42 the regression equations for t7~decon may be written in the
t-domain or in the r7~domain. The regression equations in the 7-domain are obtained
from the regression equations in the ¢-domain by multiplying both sides of the equations
by the NMO and spherical divergence operators. Are the solutions to these regression

equations related by the same transformation, that is NMO and spherical divergence?
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Consider the regression equation (1). Transforming the regression variables to
another domain by a linear transformation is done by multiplication with a matrix A.

The resulting regression equation in the new domain is (3):
AY =~ (Al)a + (AX)b (3)
In the original domain the residuals of equation (1) satisfy the condition:
E'(Y-Y)=0 (4)
If the transformed solution of (1), AY, is also a solution to (3), then
(AE) (AY - AY) =0
that is,
E'A'A(Y-Y)=0 (5)

If we look for transformations A such that equation (5) holds for any choice of E

and Y — Y satisfying (4) , a necessary condition on A is:
A'A=XI N>0

This condition states that A should be proportional to a unitary transformation. Con-
versely, applying a unitary transformation followed by multiplication by a constant does
not modify relative lengths. Therefore AE is the optimal vector of residuals for the
regression (3).

Because the transformation NMOt relating the t- and 7~-domains is not unitary
(Biondi and Claerbout discuss unitary NMO in this report), solving the t~decon equa-
tions in the t-domain and transforming the solution to the -domain will yield a different
result from solving the decon equations in the 7t-domain. Figure 3 gives a geometrical
illustration of this property with an example of a transformation in the plane which is

not unitary.

CONVOLUTIONAL MODEL

We recall first the convolutional model presented by Claerbout in SEP-42. At zero
offset, or in the 7~domain, a synthetic model for reverberation is simply the convolution
of a “reverberation” filter with a white reflectivity sequence denoted below as random .

Offset and attenuation effects are included by following the reverberation filter with the

%NMO_1 operator. The synthetic model is now in the t-domain and the effect of the

bubble is modeled by convolution with a “bubble” filter. Formally,
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FIG. 3. Regression in the original domain will be represented as an orthogonal projec-
tion on the line D ;. The linear transformation shrinks the Ox axis by 0.5 and leaves the
Oy axis unchanged. The inverse of this transformation is a stretching of the Ox axis by a
factor of 2. Point A projects onto B;. The linear transformation maps A, into A,
and the first bisector D, into the line D, A, projects then into B, on the line D.,.
The inverse transformation maps B, into C, which is different from the starting point
A

1 1 NMO ! random (6)

data ~ ————
ara 1-bub t 1-rev

Several possible generalizations are mentioned in SEP-42. One of them, distin-
guishing reverberation at the shot from reverberation at the geophone locations, was

implemented and the results are shown in the next section. Reverberation at the shot is

modeled with an offset-independent filter ¢ revs ”. Reverberation at geophone locations

144

involves an offset dependent filter *“ revg ”. Basically the extension amounts to splitting

the term 1 in equation (1), into the product 1 1 , leading to:
1-rev —revs 1 - revg
data ~ _1 1 NMO! 1 random (7)
1 - bub ¢ 1-revs 1- revg

In order to derive a linearized model we follow the same steps as in SEP-42. Equa-

tion (7) is multiplied successively by the inverse of of each operator,
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(1 - revg )(1 — revs NMO ¢ (1 - bub )data =~ random (8)

then terms of order higher than one in the unknowns are neglected, and a regression

equation is obtained by requiring the norm squared of random to be small:

NMO t data =~ revs*NMO t data + revg*NMO t data + NMO t bub*data (9)

Equation (9) can be rewritten with matrix multiplications instead of convolutions as
indicated in SEP-42. Equation (8) is expressed in the rt-domain. Another possibility is

to set the regression equations in the t-domain as:

data ~ NMO™! —lt- revs*NMOtdata + NMO ‘l%revg*NMOtdata + bub*data (10)

As mentioned before, the solution of equation (9) is not the solution of (10)
transformed by NMO¢ .

EXAMPLES

The data set used in the examples is a marine profile from Canada (Yilmaz and
Cumro, 1983). The same data were used in SEP-42, (Claerbout, 1985). In all examples,
the filters have a 60ms gaps between the leading spike and the next non-zero coefficient.

The NMO velocity increases linearly with depth from 1.5km/s to 3km/s.

Figure 4 shows deconvolved gathers with offset independent filters. One gather is
deconvolved with the reverberation filter only, one with the bubble filter only, and one
with the bubble and the reverberation filters. All time samples are used in the estimation
and the lengths of the filters are 30 time samples as in SEP-42.

Figure 5 shows the correlation matrix for the regression system (9). The matrix is
symmetric and composed of four approximately Toeplitz matrices. The upper left block
is the correlation matrix for the reverberation filter, the lower right matrix is the correla-
tion matrix for the bubble filter, and the off diagonal block matrices are cross-correlation
matrices between data in the t- and the 7domains. The strong cross-correlation is an

indication that bubble and reverberation filters are “parallel”.

Figure 6 presents results in the ~~domain for offset dependent reverberation filters,
estimated in windows along the geophone axis. We used a constant reverberation filter
across the gather, which models the reverberation at the shot location. No bubble filter
was included. The lengths of the filters are 30 time samples. The numbers of estimation
windows for the offset dependent filters are 1, 4 and 8. The increased number of filter

coefficients brought only a slight improvement in the deconvolution.
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Figure 7 shows the data in time domain and their decomposition in three frequency
bands. The low-passed gather shows very interesting events with linear moveout which
seem evidence for bubble multiples. Are such multiples present for reflection events?

Why was the bubble filter not successful at removing this low-frequency noise?

CONCLUSION

This paper provides a better understanding of the idea of simultaneous tr
deconvolution, and its relation to iterative t- and ~decon. A good forward model, includ-
ing the effect of bubble and reverberation multiples is a helpful tool for improving decon-
volution. However, examples better deconvolved gathers are yet to come. The present
reverberation and bubble filters appear statistically redundant and a more specific

description of the events to be deconvolved will certainly help.
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FIG. 4. Simultaneous t7-deconvolution with offset independent filters. From left to right:
a) NMO and spherical divergence corrected data; b) bubble and reverberation filters each

30 time samples long; ¢) bubble filter only, length 30 time samples; d) reverberation filter
alone, length 30 time samples.
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FIG. 5. Correlation matrix for 30 reverberation filter coefficients and 30 bubble filter
coeflicients. Each block of the matrix is approximately Toeplitz. The upper left block is
the correlation matrix for the data in t-domain up to a lag of 30. The lower right block
is the correlation matrix for data in ~domain up to a lag of 30. The off diagonal blocks
are the cross-correlation matrices between data in t- and ~domains. High values of off-
diagonal terms indicate parallel regression variables.
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FIG. 6. Results in ~domain for tr~decon with shot reverberation filter and offset depen-
dent geophone reverberation filters. The lengths of the filters are 30 time samples. a)
one geophone reverberation filter for all offsets; b) four windows for geophone reverbera-
tion filters; c) eight windows for geophone reverberation filters. A slight improvement is
noticeable in frames b) and c) at 1.3 and 1.6 s near zero offset.
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FIG. 7. Frequency decomposition of t-domain data: a) field data; b) frequency band O-
10Hz; ¢) frequency band 10-25Hz; d) frequency band 25-60Hz. Notice the event with
linear moveout on the low passed gather b).
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