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Two Domains of Anisotropy

Joe Dellinger and Francis Muasr

INTRODUCTION

This is a recapitulation of appendix 2 of “The Kinematics of Axisymmetric Anisotropy”
(Dellinger and Muir, SEP-42), presented in a somewhat more intuitive form.

In that paper, the concept of phase and group velocity were discussed, and equations were
given which related these two domains. Passing notice was given to certain special symmetries

of these equations. In this paper, these symmetries will be examined more carefully.

THE GROUP AND PHASE DOMAINS

The group velocity curve is a graph of V,, the velocity of energy propagation, versus ¢,, the
angle of energy propagation. The phase velocity curve is a graph of V,,, the velocity of plane
wave propagation, versus ¢,,, the angle of plane wave propagation. Since it is possible to con-
struct V,(¢r) given Vy(¢w), and vice-versa, these two alternative forms express the same
information, and can be considered as two different “domains” for representing the same thing.

These two domains are closely allied to the two domains of Fourier analysis. The “group”
domain is that of time and space. A graph of the group velocity as a function of angle traces out
the outer surface of the impulse response, also known as the ray surface.

The “phase” domain is that of plane waves. For a given wave equation, it is the phase ve-
locity of a wave traveling in a given direction that is easy to solve for. This information is
contained in the dispersion relation.

Instead of velocities, it is also possible to express these quantities in terms of slowness,
which is simply the inverse of velocity. We will represent slowness with an upside-down V, 4. A
dispersion relation as normally plotted is simply a graph of phase slowness, 4,(¢y). In figure 1
the equations relating the group and phase domains are given, both in terms of velocity and
slowness.

Notice the symmetry of these formulas. There are two transformations involved here. Let

us call the one which transforms from group velocity to phase velocity “T"”, and the one which
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FIG. 1: Equations relating the group and phase domains, in terms of both velocity V and slow-
ness A. The symmetry evident in these equations is there because the transformation from the
group velocity curve (ray surface) to the phase slowness curve (dispersion relation) is its own

inverse.

transforms from velocity to slowness “X”. Trivially, X is its own inverse. The interesting sym-
metry in the formulas arises because the composite transformation TX is also its own inverse
(as is XT). TX transforms from the ray surface to the dispersion relation (and back again).

In figure 2 all four representations are plotted together for comparison, with the arrows
showing how the four figures are related by the two transformations.

Note that corresponding regions on the dispersion relation and ray surface are always either

both concave or both convex.

The stretch theorem

The composite transformation has one more important symmetry. If either the ray surface
or the dispersion relation is stretched by a constant factor, then the other domain is compressed
by that factor along the same direction, point by point. This can be proven algebraically.

Intuitively, it is a manifestation of the “stretch theorem” of Fourier analysis.

Since circles map onto circles, this shows that ellipses map onto ellipses. More importantly,

the best fitting ellipse at a point in one domain can be easily mapped onto the the best fitting
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FIG. 2: Counterclockwise, starting from the upper right: ray surface (group velocity), phase ve-
locity, dispersion relation (phase slowness), group slowness. Put another way, the right column
is the “group” domain, and the left column is the “phase” domain. The top row is velocity, and

the lower row is slowness.
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ellipse at the corresponding point in the other domain.

APPROXIMATIONS

The operator TX does not have a convenient form, since given V,(¢y) we can only obtain
Vi (¢r) parametrically, as a function of ¢,,. It is therefore convenient to make some sort of
approximation which can be transformed “exactly” from one domain to the other.

Given axisymmetry, there are two symmetry planes present in both the ray surface and the
dispersion relation, a horizontal one and a vertical one. At these symmetry planes ¢, and ¢, are
equal, and locally the operator T does nothing. Since the horizontal and vertical velocities are
important geophysical parameters, a reasonable approximate scheme should handle these two
points correctly.

The horizontal axis of the best fitting ellipse for small offsets determines the apparent
(NMO) velocity. This is also an important geophysical parameter. A good approximate scheme
should also at least correctly map this ellipse.

Francis Muir’s “nemesis” approximation described in the previous paper in this report
hopefully should prove useful in anisotropic studies because it possesses these essential

properties and is also quite simple.
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