55

A Practical Anisotropic System

Francis Muir and Joe Dellinger

INTRODUCTION

We are interested in extending the repertory of modeling, estimating, correcting, and imag-
ing programs to allow for the effects of anisotropy, and to this end we have developed a
framework of equations that honor two constraints:

1) Not committed to any particular anisotropic model.

We wish to accomodate both intrinsic and extrinsic forms of anisotropy, and, in the latter
case, both low-frequency, Backus models and high-frequency, Dix models. In the end, of course,
it is likely that all three, and possibly other, models will play a role in unraveling the earth’s
lithology from seismic and other data.

2) A straightforward connection between wave and ray equations.
This is in contrast to the classical elastic anisotropic model, where there is no direct path

between waves and rays, but only through parametric relationships.

A Uniform Structure

All the equations have the same rational, multinomial structure:
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where, if a = 2, we return to a simple, linear form:
f=z+y (2)
The plane wave equation
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where W is the alacrity (velocity squared) normal to the wave, W, and W, are the vertical
and horizontal alacrities, the circular functions are with respect to the angle from vertical, and

qw is the anelliptic factor, which, set equal to unity gives:
W = W, cos? +W, sin® (4)
a simple, elliptic form.

The dispersion relation

w2 —_ (VVZ,C:.%)2 + (1 + qW)szzkzkg + (Wzkz)z (5)
W, k2 + W k2

following directly from the plane wave equation.

The differential operational constraint

D

2 _ (WZDZ)z + (14 qw)WszDﬁDi + (WzD:?:)z (6)
¢ W,D2 + W, D2

again returning to a familiar elliptic form when ¢, = 1:
D} =w,D: +W,D} (7)
The ray equation

Mo (M, cos?)? + (1 + gm) M, M, cos? sin? +(M, sinz)2
N M, cos? + M, sin®

(8)

where M is the ray sloth (inverse velocity squared) for some angle, M, and M, are, respec-
tively, the vertical and horizontal ray sloths, the circular functions are with respect to the ray

angle from the vertical, and g, is the anelliptic factor. Again, if ¢,, = 1 then:

M = M, cos® + M, sin® (9)

Of course, we can always write down similar forms for the wave and ray equations. What is
perhaps surprising is that the two forms are consistent to fourth-order paraxial approximation

and to second-order at horizontal, provided that:

M,=1/W,, M,=1/W,, and g¢m =1/qu (10)
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For example, if we fit our model dispersion relation to some “real” dispersion relation at
vertical and horizontal, and also fit the curvature at vertical, then our form of the impulse re-
sponse will fit the “real” impulse response also at vertical and horizontal, and the curvature at
vertical. The reasons for this are discussed in the companion paper in this report “Two
Domains of Anisotropy”.

The other surprise is how well the rational polynomial form fits away from the axial control
points - providing that we recognize that these new forms can never model the sometimes
triplicating behaviour of real elastic anisotropy. Figure (1) illustrates how closely the impulse re-
sponse can model elastic behaviour, even in the (for most people) somewhat extreme anisotropy

of the Greenhorn Shale of Jones and Wang.

Modeling NMO equation

This follows directly from the ray equation:

T(0)* + (1 + gm)T(0)* M, 22 + (M,a?)? 1
T(0)2 + M,z? .

T(z)? =

reducing to the familiar form:

T(z)? = T(0)* 4+ M,z? (12)

in case ¢, = 1. Note also that M, is not involved in the equation. As with the conventional
hyperbolic form, move-out on a record contains, intrinsically, no information on time/depth

conversion.

Processing NMO equation

In case of a practical NMO routine, it makes sense to parameterise in terms of the apparent
horizontal sloth, corresponding to the paraxial fitting ellipse, rather than the true horizontal
sloth. In this case, M, is replaced by ¢,,M,,, where M,, is the horizontal sloth of the paraxial

ellipse, and we have:

(T(0)*)" + (1 + )T (0)* Meo® + (g Mez2%)* 13)
T(0)2 + QwMeszz
This NMO equation forms the basis for an NMOR routine, NEMESIS, which is used by

Marta Woodward in a companion paper in this report.

T(z)? =

Parameter Bounds

The principal restriction on sensible behaviour of the model is that the phase slowness

surface and the discontinuity surface of the impulse response are convex. In turn this means:
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FIG. 1: Our model (dashed line) compared with the classical elastic model (solid line) for the ray

surface of Greenhorn Shale. The inner pair of curves are for Sy, the outer for P.

al W, M >1.0
3/7T<qw, gm<17/3 (14)

Areas of Non-application

As mentioned previously, this system is inappropriate for studying or processing data
within a region of triplication. In this case there is no choice but to work in a double fourier or a
p-tau space. Otherwise it seems that all phases of processing can be handled, although clearly
some work remains to be done on one-way approximations to the anelliptic differential forms
outlined in this paper. It may be worth remarking that although we have paid attention to kine-
matic approximations alone, nevertheless, as in the case of all non-dispersive forms, amplitudes
are strictly controlled by geometry, and if we get the travel times right the amplitudes will fall

into proper place.
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