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Velocity estimation by simulated annealing:
problems and prospects

Daniel Rothman

INTRODUCTION

This paper proposes a technique for estimating laterally-variable interval velocities
in a 2-D Earth without making a first guess. The proposed method would obtain only
approximate results; greater accuracy can be achieved by using the result of this tech-

nique as the first guess in a linearized approach to velocity inversion.

I propose a Monte Carlo approach similar to the algorithm I used to estimate stat-
ics corrections in Rothman (1985). Although the computational workload for velocity
inversion appears at first to be unmanageably greater than it is for the statics problem, a

few key simplifications might make the solution to the velocity problem computable.

This proposal investigates two applications. For simplicity, I first examine the
problem of borehole tomography. I look at it first as a problem of traveltime inversion,
but I speculate briefly on the use of wave-theoretic methods. Next, I look at the
reflection seismic problem, treating velocity inversion as a problem of stack optimization
(Toldi, 1985). In all cases the issue of repeated forward modeling is an important prob-

lem. I identify the key issues, and propose possible solutions.
BOREHOLE TOMOGRAPHY

Inversion of traveltimes: the ray-tracing problem

I begin with the inversion of traveltimes because the required computational effort
1s strongly diminished by the convenience of working with traveltimes, rather than the

seismograms themselves.

Consider a rectangular portion of a 2-D Earth, with boreholes drilled on opposite
sides of the rectangle. On the left side are a line of sources, and on the right are a line
of receivers. In separate experiments, each source excites seismic waves which propagate
through the 2-D Earth to the opposite side, where the transmitted waves are recorded

by the receivers in the other borehole. The time of each direct arrival is then observed
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on each seismogram; the dataset to be inverted is then this set of observed traveltimes
t,-;-bs. This problem, known as borehole tomography, is discussed by Al-Yahya (1985) and
Worthington (1984).

Divide the rectangular Earth into M rows and N columns of blocks. The slowness
(the reciprocal of seismic velocity) of the block in the kth row and the /th column is
denoted by wy . The problem is to find the slowness model w = {wy } that yields the
calculated traveltimes {ti;-“’c which best fit the observables {t,-;-bs . Expressing this as a

least-squares problem, I write

rn“i,n E(w) (1)
where
E(w) = ¥ [t5(w) -t ] (2)

iJ
The usual approach to the solution of the optimization problem (1) is to specify an

initial model wq that approximates the (as yet unattained) solution. The problem is to

now find the perturbation Aw = w — w, that solves the optimization problem

rRin E'(Aw) (3)
where
E'(Aw) = 2 [ 5 (wotAw) - 157 7 (4)
ij

Perturbations are used because they arise naturally when the problem is linearized; if the
perturbations are small enough such that first-order effects adequately characterize the
change in the model, then new traveltimes can be recalculated along the old, unper-
turbed raypaths (Aki and Richards, 1980). If the perturbations are large enough such
that first-order perturbation theory does not apply, new rays must be traced to obtain a
new set of t,-j-“’c for each new model w.

Assume for the moment that a new set of t,-;f’lc

can be easily computed, regardless
of the size of the perturbation in slowness. In analogy with the statics algorithm
described in Rothman (1985), the algorithm for velocity estimation that I propose here
updates one parameter at a time, each time choosing the new value for that parameter

from a probability distribution derived from E (w).

Let w* be an interval slowness model that is equal to a previously estimated slow-
ness model w everywhere except possibly at wy . The new value for wy is chosen from

the probability distribution
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wh) — exp{—E(Wkl)/T}
IR PRI ?

w {
where T is of course the control parameter called ‘‘temperature.”

The key computational issue here is the calculation of the probability distribution
(5). To evaluate each E (w*™), a new set of t5(w* ) must be calculated. In principle,
this means that rays must be traced through the entire model, from each source to each
receiver, for each possible value of wy . Specifically: if there are S sources and R
receivers, and each wy may assume one of W values, then there are S XR X W rays to
trace to form the probability distribution (5). But this is the work needed to update
only one parameter. A single iteration of the algorithm requires that N X M parameters

be updated; thus the number of rays to trace for each iteration is a whopping
SXR XWXNXM. What a problem!

Before discussing how the rays would be traced, it is worth making the obvious
observation that all rays do not pass through all blocks. Indeed, only a small fraction of
the rays pass through a given block. Thus rays need be retraced only if they go through
the block of interest. One of the pitfalls with this reasoning, however, is that one can
never be sure which rays pass through which blocks until the rays are traced. But a
scheme could probably be developed that would incorporate, say, 90% of the relevant

rays each time. The problem of repeated ray tracing still remains, however.

Inversion of traveltimes: the ray-tracing solution

The ray-tracing problem can probably be solved, but only after a reformulation and
simplification of the problem. I identify some key issues below, and then propose a solu-

tion.

The objective of velocity estimation by simulated annealing is to obtain solutions
that are independent of the first guess. Although first-guess-independence seems to pre-
clude the use of old raypaths to obtain new raypaths and traveltimes through a (non-

linearly) perturbed model, this is not necessarily the case.

One method that uses original rays to obtain new rays and traveltimes without
invoking first-order perturbation theory is dynamic ray tracing (Cerveny et al,, 1984).
Dynamic ray tracing provides a computationally efficient technique for two point ray
tracing. In the problem at hand, only traveltimes are needed, not the rays themselves.
Cerveny et al. (1984) show how the traveltimes for a new, nearby raypath can be
obtained from the old ray. Their theory is approximate, but not based on any lineariza-

tions; it is based instead on the paraxial approximation to the wave equation. Because
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the new ray must be close (in an asymptotic sense) to the old ray, and because the
paraxial approximation can only be iterated a finite number of times, dynamic ray trac-
ing does not appear to eliminate the need to retrace rays. It should, however, be able to
considerably lessen the computational load that an inefficient “shooting” algorithm
would require. Unfortunately, this computational saving would probably be insufficient.
Even if dynamic ray tracing were used, the basic problem of too much retracing of rays

would remain.

The solution to this ray-tracing problem demands a compromise. Although first-
order perturbation theory appears inappropriate for a nonlinear problem, it can still be
used advantageously. Consider limiting the possible perturbations of a single block so
the perturbations are always small enough such that first-order perturbation theory
holds. (The allowable linear perturbations may in fact encompass all possible slowness
values of interest. Because only one block changes at a time, the perturbation of the
entire model is small.) At the start of each iteration, new rays would be traced through
the current velocity model. This would mean tracing (only) S XR rays. Using these
rays, each slowness block wy would be updated by choosing a random number from the
probability distribution (5). New traveltimes would be computed by calculating the
traveltimes along the old raypaths in which only the slowness wy is different. Each
slowness block would be updated simultaneously at the end of the iteration, not sequen-
tially at the time of calculation. The next iteration begins by tracing new rays once
again. This is a mixture of linear and nonlinear methods, and is somewhat reminiscent
of the usual iterative linearization of a nonlinear problem. But there is one important
difference: the result of each iteration does not necessarily decrease the objective function

(1); after a sufficient number of iterations the initial guess becomes insignificant.

This combination of linear and nonlinear techniques is the algorithm that would be
written if the Monte Carlo algorithm were run in parallel. Normally, because I do not
use a parallel computer, I describe simulated annealing as an algorithm that sequentially
updates each parameter. As I've noted elsewhere (Rothman, 1984), simulated annealing
can be implemented on a parallel machine; indeed, it should be. If the algorithm were
executed in parallel, equation (5) would be evaluated for each slowness parameter simul-
taneously, and each parameter would also be updated simultaneously. Thus rays would

(and could) only be retraced at the end of each iteration.

Viewed from this parallel perspective, is the solution now computable? Based on
my experience with statics estimation, I would expect that several thousand iterations
would be needed. The question then reduces to whether rays can be traced several

thousand times. The answer is a qualified yes. If the number of sources and recetvers is
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small, simple ray tracing that yields only traveltimes (nothing else is required) should be

inexpensive enough to repeat many times.

Inversion of wavefields

It is attractive to consider using waves instead of rays. Waves are easier than rays
to program, easier to understand, and they yield more information. Unfortunately, a
wave-theoretical approach is not nearly as conducive to simplification as a ray-
theoretical method. Unlike rays, waves are global, rather than local, phenomena. Thus
waves appear impractical for use in a nonlinear, first-guess-independent algorithm that
updates one parameter at a time. But there are some conceptual advantages worth con-
sidering. I will first describe how waves would be used in the Monte Carlo algorithm I
outlined above. I will then show how this perspective may shed some light on the prob-

lem of linearized velocity estimation.

I would try the following technique. Each wavefield would be backpropagated from
the receivers back to the relevant source. The best slowness model is then that model
which maximally focuses the wavefield at the source. For source s;, call this focusing
measure F'(s; ,w). F is a norm that is zero for no focusing and one for perfect focusing.

Then set

E(w) = -X F(s;,w) (6)

to be the objective function. The best estimate of the slowness model w is found at the

global minimum of E (w).

For each (nonlinear) perturbation of velocity, a new wavefield would have to be
computed. Thus, there would be S XN XM X W wavefields to compute for each itera-
tion, an impractically large number. There is a small consolation, however. As the slow-
ness block wy gets closer to the sources, the backpropagated wavefield is easier to
compute—it need be extrapolated only over a short distance. But there are still too
many computations to perform. Thus a wave-theoretical approach is probably not prac-

tical.

The idea of backpropagation, focusing, and the minimization of the quantity in
equation (6) deserves further attention, however. It would probably be an excellent tool
for linearized inversion of the velocity field, in the conventional context in which one
makes perturbations about a first guess. Starting with an initial slowness model w,, one
would seek, in analogy to equation (4), the best first-order perturbation Aw that minim-

1Zes
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E'(Aw) = —Z F (s; ,wot+Aw) (7

The ability to minimize (7) depends on the ability to calculate the partial derivatives
OFE'/0Awy, which should be possible in a practical context. This linearized wave-
theoretical approach is dependent on an initial guess, but it nevertheless appears to be
an interesting avenue for study in itself. Devaney and Oristaglio (1984) discuss some

related ideas.

VELOCITY ESTIMATION FROM REFLECTION DATA

I would follow Toldi (1985) and seek the set of interval velocities that produce the
optimally stacked data; i.e., the stack with the greatest power.

Parameterize a 2-D Earth by slownesses {wy }, where k¥ denotes depth and !/
denotes lateral location. Designate by d,, (¢) the trace at midpoint y and offset h .
Assume that all reflectors are flat. For each slowness model w, there exists a set of trav-
eltime corrections that transform a non-zero-offset trace to a zero-offset trace. These
traveltime corrections produce data dy [7(w)], where 7(w) is the transformation to

zero-offset time. This traveltime correction is not hyperbolic NMO correction.

The objective function is now
E(w) = EZ(%]dyh [r (W)]]2 : (8)

New estimates of each slowness wy are obtained by choosing a random number from the
probability distribution (5), in which E (w*) is the stack power obtained from a slow-
ness model that i1s the same as w everywhere except at wy . There are two computa-
tional issues in this problem: the calculation of 7 (w) and the power computations inside

the parentheses in (7).

To compute the traveltime corrections 7(w), I would trace rays in the same way
that I advocated for the borehole tomography problem. Thus I would compute new
traveltimes using old raypaths, but I would retrace the rays after each iteration. Unfor-
tunately, a new ray would have to be retraced for each value of 7, making these compu-
tations considerably more expensive than the computations required in borehole tomog-
raphy. The assumption of flat reflectors should facilitate the recalculation of raypaths.
I do not know how crucial this assumption is, but it does appear that dip must be

specified.

The stack-power computations really shouldn’t present a major problem. The

traces should be interpolated (in time) before commencing the algorithm, by, say, a
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factor of four or so. Then the traveltime corrections to dy (£) could be made by

nearest-neighbor interpolation.

CONCLUSIONS

Velocity estimation by simulated annealing requires repeated forward modeling.
Because the Monte Carlo algorithm updates one parameter at a time, the local nature of

ray-theoretical techniques makes ray tracing more useful than wave-based methods.

If the perturbations of velocity (or slowness) models are small enough such that
first-order effects adequately characterize the change in the model, then new traveltimes
can be computed using the old, unperturbed raypaths. Although a first-guess-
independent method may appear to preclude the use of first-order perturbation theory,
this theory can be profitably applied to the estimate of each velocity (or slowness)
parameter when the rest of the model is held constant. New rays then need only be
retraced once per iteration. This technique is appropriate for parallel computations, but

it may of course be implemented sequentially.
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