Migration velocity analysis by optimization:
linear theory

Paul Fowler

ABSTRACT

A method is presented for finding the velocity function that yields the optimal pre-
stack time migrated image from seismic data. A linear theory is developed which relates
changes in the estimated migration velocities to changes in an underlying interval velo-
city model. This velocity analysis method thus provides not only the migration veloci-
ties, but also a corresponding interval velocity model. The algorithm is fully automatic,
and requires no picking of traveltimes or horizons. It should correctly estimate velocities
in the presence of complex geologic structures. Two versions of the algorithm are
developed: the first requires that velocity varies only weakly laterally, whereas the

second should handle much larger lateral velocity variations.

INTRODUCTION

In this paper I discuss a formulation of velocity analysis as an optimization prob-
lem. My goal is to design an efficient velocity analysis algorithm that requires neither
manual picking of reflecting horizons or velocity values, nor extensive ray tracing, yet
makes few restrictions on the nature of the reflectors or the velocity field. In particular, I
emphasize velocity analysis in regions of complex subsurface geologic structure, where
migration is required to produce an adequate image of the subsurface. Because I use
migration operators as an intrinsic part of the velocity analysis algorithm, I term this
method migration velocity analysis. [ first discuss the particular methodological
approach taken here toward extracting velocity information from seismic reflection data,
and its relation to conventional stacking velocity analysis techniques. Next I consider the

case In which structure varies but the velocity function is assumed to be only weakly
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laterally variable, and show how the techniques developed by Toldi (1985) can be com-
bined directly with the velocity space dip-moveout and migration techniques I have
presented in previous papers (Fowler, 1984a, 1984b). I then examine an extension of
these methods applicable for both complex structure and laterally varying velocity func-
tions. The derivation of a theory for this latter case forms the largest part of this
paper.

Some of the most challenging problems of velocity analysis and imaging are in those
areas where both the velocity function and the reflector geometry vary significantly
laterally. In such situations it is generally difficult to obtain good images of the reflector
positions unless the velocity is known quite precisely, but it may be equally difficult to
determine the velocities well unless the structure is already accurately known. Conven-
tional techniques of stacking velocity analysis can fail due both to lateral velocity varia-
tion and to structural effects. Pre-stack time migration methods may be used for finding
velocities in complicated structural regions if the velocity function is laterally constant or
only slowly varying (Fowler, 1984a, 1984b, 1985; Shurtleff, 1984; Tieman, 1984). Toldi
(1985) attacked the other side of the problem: he assumed that the reflector geometry
was simple and known, and showed how to invert observed stacking velocities for lateral
anomalies in the interval velocities. The principal extension I make upon his work is to
use for velocity analysis pre-stack migration instead of normal moveout (NMO) and
stacking. By doing so, I hope to be able to resolve laterally varying velocities in the pres-

ence of complex structure rather than have to restrict attention to simple planar beds.

Those readers familiar with Toldi’s work will recognize immediately the extent to
which I have drawn upon his exceptionally lucid presentation as a basis for the present
work. Velocity analysis using NMO and stacking is simpler in many ways than migration
velocity analysis, so for a reader baffled by the current paper I recommend consulting
Toldi’s dissertation (1985) as an introduction to this type of velocity analysis algorithm.
However, in an attempt to keep this paper reasonably self-contained, I repeat portions of
the derivations which are nearly identical for both the stacking velocity and migration
velocity approaches. I shall attempt as I proceed to highlight both the similarities and
the differences between Toldi’s approach and mine, but the cognoscenti may find it pos-
sible merely to skim the sections concerning the general formulation of the problem and

the 1-D algorithm.

The approach taken in this paper to interval velocity analysis is not the only one
possible. Most other methods which have been suggested differ principally in requiring
the manual or automatic picking of travel-times or reflecting horizons, or both (Hubral
and Krey, 1980; Gray and Golden, 1983; Sword, 1985; Bishop, et al., 1985). The
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optimization algorithm proposed here can be construed as implicitly performing an
automatic picking, as well, but the “picking” is for migration velocities, which I believe,

like stacking velocities, can usually be determined quite reliably.

VELOCITY ANALYSIS AS AN OPTIMIZATION PROBLEM

The approach to velocity analysis taken here is based upon specification of three
functions: i) an imaging operator which, upon input of a particular velocity function,
converts the seismic data into an (approximate) image of the subsurface geology, ii) an
objective function which measures in some sense the quality of the resulting image, and
iii) a conversion scheme which relates the imaging velocities to an underlying model of
the actual acoustic velocities of the rocks. In a general sense, velocity analysis is taken
to consist of trial imaging with a variety of velocity functions, and selection of that one
which which maximizes the objective function. The imaging operator used most com-
monly in conventional velocity analysis is NMO and stack; in this paper I focus on the
use of pre-stack time migration. The objective functions used are ordinarily based on

some smoothed or time averaged form of energy or magnitude of signal amplitude.

This formulation of velocity analysis as an optimization problem depends upon
exploiting the redundancy present in data which has been collected as multiple experi-
ments providing overlapping information about the subsurface. It is perhaps easiest to
consider the data as if it arose from a series of constant offset experiments. If the earth
model were restricted to flat horizontal reflectors and the velocity were allowed to
depend only on depth, then a correct choice of the normal moveout velocity would align
the various offset panels better than an incorrect one. (This is in essence a definition of a
correct NMO velocity.) Hence, the signal amplitude in the stack would be greater using
this NMO velocity function than using any other one for which the constructive summa-
tion would be replaced in part by destructive interference due to misalignment. The
same principle may be applied to imaging operators more sophisticated than NMO and
stack: the best velocity function for imaging is the one which maximizes the magnitude

of the amplitude of the signal in the resulting image.

In practice, one probably would not want to use simply the rectified amplitude of
the signal, due to the many zeroes, but instead would want to smooth or average to
remove the waveform. Two candidates for good objective functions which 1 intend to
test are the energy in the signal, smoothed over a time window of a few periods of the
dominant frequency, and the analytic envelope of the signal. Conventional stacking
velocity analysis often uses semblance, a coherency measure which may be expressed as a

normalized energy; I do not see any good way to incorporate the (non-linear) semblance
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normalization into a pre-stack migration scheme.

Besides an objective function, one needs to specify an imaging operator appropriate
to one’s assumptions about allowed reflector geometry and velocity field. The combina-
tion of NMO and stack forms a kinematically accurate imaging operator under the
assumptions of flat reflectors and laterally invariant (or only weakly varying) velocity.
Lynn and Claerbout (1982), Loinger (1983), Rocca and Toldi (1983), and Toldi (1985)
have developed theories showing how stacking velocities may also be inverted for infor-
mation about laterally varying velocities. The basic principle of their approach is to find
the underlying interval velocity model which best explains the observed pattern of stack-
ing velocities; I apply a similar methodology to migration velocities. The NMO and
stack operator runs into problems in the presence of complex structure, because it is not
easy to unscramble the effects of structure on the observed stacking velocities from those
due to lateral velocity variations. I take the viewpoint here that a better starting point
in this case is provided by the velocities associated with pre-stack time migration, since
this kind of migration yields an appropriate imaging operator for most complex struc-

tures until lateral velocity variations become quite large.

The third important component of a velocity analysis scheme of the nature dis-
cussed in this paper is the relation between the imaging velocity function and the under-
lying interval model. I have defined above what I mean by an optimal imaging velocity.
The velocity which is physically most meaningful and important, however, is the interval
velocity, or local acoustic velocity of the rock. The two velocities could only be expected
to be equal if the earth were of a single constant velocity and one’s choice of imaging
operator were adequate to allow for the effects of whatever structure were present. In
general, the relation between these two velocity functions can be very complex; accurate
representation of this relation lies at the core of successful extension of laterally invari-
ant velocity analysis to the laterally varying case. The interval velocity is critical for
good imaging of seismic data for several reasons. First, as Toldi demonstrated clearly,
even in the laterally invariant case simple-minded optimization of the imaging velocity
function without reference to the corresponding interval velocity model can result in
wildly unreasonable interval velocities; it is the interval velocity model on which con-
straints to the optimization should be formulated, not on the imaging velocities. Second,
in the laterally varying case, the optimum image derived from laterally invariant imag-
ing operators (e.g., a stack or a pre-stack time migration) may give a reasonably well
focused image, yet significantly misrepresent the true subsurface structure, since
reflectors may be systematically mispositioned. In order to obtain an accurate depth

image of the subsurface, the effects of lateral variation in the interval velocities must be
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fully allowed for. In particular, a high quality interval velocity model is a prerequisite
for any depth migration, either pre- or post-stack. Hence, for migration velocity analysis
just as for stacking, the objective function to be maximized should, if at all possible, be

related back to an underlying model of interval velocities.

VELOCITY AS A FUNCTION OF DEPTH ALONE

I follow Toldi in referring to the problem of velocity analysis under the restriction
of lateral invariance as the 1-D problem; the dimensionality is of the velocity field, not of
the structure. The extension of his algorithm for this case to migration velocity analysis
is straightforward. Nonetheless, I outline in some detail the 1-D migration velocity algo-
rithm, my purpose being to summarize the formulation and implementation of the
optimization algorithm in a context in which the mathematical derivations involved are
minimal, before the complexities of the full two-dimensional algorithm are tackled.
Before proceeding further I should point out that, although I continue to follow conven-
tion and refer to ‘“‘velocity analysis”, most of the theory and implementation in the rest

of this paper is cast in terms of inverse velocity, or slowness.

The imaging operator I use for both the 1-D and the 2-D cases is pre-stack time
migration. In implementation, the algorithm begins by imaging the data with a suite of
reference slowness functions; choosing these functions to be just a range of constant
slownesses is easiest both to conceptualize and to implement. This reference imaging
may be done practically by pre-stack F-I migration (Shurtleff, 1984; Tieman, 1984), by
velocity space dip-moveout and zero-offset migration (Fowler, 1984a, 1984b), or possibly
by pre-stack phase shift migration (Fowler, 1985). I treat the results of these various
methods as equivalent for the present discussion. I also assume that the slowness axis is
sampled sufficiently densely to allow reconstruction of any image corresponding to a
variable slowness function by interpolation between the reference panels actually gen-

erated.

To calculate the objective function I first calculate either the energy in the image,
smoothed over a short time window, or the analytic envelope of the image; in either case,
I use E(w,y,7) to designate this function and refer to it generically as ‘“‘energy”. Given

a slowness function w (y,7), the objective function @ is then defined as
Q(w) =23 % E(w(y,7)wi7) (1)
i

Evaluation of the objective function may be done either by extracting the image
corresponding to a specified slowness function, and then summing up E for that image,

or by calculating E for each reference panel, and interpolating and summing the £
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values corresponding to the choice of slowness function.

In principle, the migration velocity analysis method so far is quite similar to Toldi’s
approach to stacking velocity analysis. The objective function differs in that I use an
unnormalized energy measure instead of semblance, but this difference is minor. The
space of reference images is similar, but note that the migration method requires imaging
all midpoints at once, whereas (for the 1-D case) the stacking analysis could be done on
isolated midpoints. The last step, the relation between the imaging slownesses and the
interval slownesses, is the same for the stacking and migration methods: the one-
dimensional algorithms both make the conventional identification of imaging velocities
with root-mean-square (rms) averages of the interval velocities:

1/8
w; (m) = — |- @)

The interval slowness model m corresponding to a given migration slowness function w

can thus be calculated from Dix’s equation.

Having specified the three functions which determine the nature of the velocity
analysis method, I can proceed to outline an algorithm to implement it. The following is
[4

a “‘generic”’ steepest ascent algorithm taken nearly verbatim from Toldi (1985, p.21); it

can be applied for each midpoint y; of interest.

Set m to starting model: m = m
Set w to starting value: w = w

Calculate G by taking derivatives of w at m.

Begin loop on iterations

1. Form vy7,,@ at current model point m:

(Va@); — E(w; (m)+Aw ,y,-gz-v)—E(wj (m),y; ,7; )

VmQ = GT VWQ

2. Line search for o that maximizes @ (m+av, Q)
Q (m+avn,Q) = @ [w(m)+aGv,Q

3. Update model
m = m+aVn,Q

w = w+aGvn,Q

recalculate G by taking derivatives at new m.
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End loop on iterations.

The notation of the above algorithm needs to be explained. The migration slowness
function is represented by w and the interval slowness model by m. In this example,
both are taken as functions of the zero-offset travel-time, 7, for a fixed midpoint y. The
energy value calculated for a particular slowness w and 7 is designated by E (w,7), and
the objective function @ is the sum of F along a given velocity function, as defined

dw;

above. The matrix G comprises elements G, = ——

my

differentiating the rms formula (equation 2) relating w to m to get

which can be calculated by

am T m

ow; _ T | W (m
4

) 3
] for p <y (3)

P P

I
o

forp>j

The two gradients V@ and v,,@ refer to the changes in @ due to changes in w and
m, respectively. The first gradient is calculated by finite difference approximation from
the energy data space, and the second by the chain rule. The steps of updating w and

m are themselves linear approximations.

The algorithm as shown here is a simple steepest-ascent method. In practice, one
would want to use more sophisticated methods which converge more rapidly, and would
want to include constraints on the optimization. I briefly discuss these matters after a
description of the 2-D algorithm; the reader may also consult Toldi’s dissertation for
more detailed discussion. Most major features of the 1-D algorithm carry over to the 2-
D case: the optimization is guided by the gradient $7,,@, which can be calculated
indirectly from v, @ if the matrix G is known. The 2-D algorithm differs from the 1-D
principally in the way that G is defined and calculated.

VELOCITY AS A FUNCTION OF BOTH DEPTH AND LATERAL POSITION

In the previous section I assumed that velocity was allowed to vary in the lateral
direction only weakly if at all. In this section I derive a theory which attempts to find
the laterally and vertically varying interval velocity model which optimally explains the
observed peaks in the migration velocity spectrum. That is, I now require only that for
each y and 7 there is some w for which time migration focuses the data better than for
other values of w. I no longer assume that the migration velocity is simply an rms aver-

age of the overlying interval velocities; instead I derive a more complicated linearized
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relation between m and w.

The 2-D algorithm uses the same data space as the 1-D, namely panels of pre-stack
constant velocity migrations of the original seismic data. The objective function @ is
also the same, either the energy smoothed over a short time window or the analytic
envelope. The 2-D algorithm, like the 1-D, is guided by wv,@, which tells how to
update the model so as to increase the value of the objective function. I write the migra-
tion slowness w as a function of y and 7, so w;; =w (y;,7;). Similarly, I write the inter-
val slowness m as a function of z and z, so m,, =m (z,,z,). For a given component of

Vm& one has

(VmQ )pq == 29 = Z E Dw.- W (4)

As in the 1-D algorithm, can by approximated from the data by a finite difference

w,']'

calculation:

9Q E (w;; (m)+Aw,y;,7;) - E(w;; (m),y; ,7;)

o= 5
(Vu@)s = g (5
. . awij . .
Thus what needs to be found is an expression for , relating a change in interval
Mg

slowness at a particular point (z,,z,) to the resulting change in observed migration
slowness at some point (y;,7;). To derive an approximate analytic expression for these

derivatives, I follow Toldi’s lead, and use the intermediary of travel-times.

Consider first a single point diffractor at (z;,z;) in a medium of constant slowness
w. If one were to run a seismic survey passing over this point, the kinematics of the

pre-stack point diffractor would be given by the pyramid equation (Claerbout, 1985)

t =w \/zd2+(y ~h -z, )2 + w \/zd2+(y +h -z, )2 (6)

Suppose now that the slowness model were perturbed. The travel-time data for the
point diffractor would now be a set {t; y;,h } which would no longer satisfy equation
(6) exactly. However, if the perturbations were not too large, it should be possible to
define a slowness W, a zero-offset time T, and a location Y for which an equation of

the form

t = VTHWHy-h-Y)E+ VT WHy+h-Y)? (7)

best fits the data points in a least-squares sense. Note that it is necessary to consider
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the changes in T and Y as well as W because, for a laterally varying perturbations in
the slowness model, it would not in general be true that 7=Wz; and Y =z, as they

would be for the constant slowness background of the starting model.

The pyramid equation (7) does not lend itself to a ¢ 2~z 2 linearizing parametrization
such as Toldi used for least-squares analysis of stacking slownesses. Instead, I solve the
problem of fitting a pyramid through the data points {#; y; ,h; } by linearizing around
an initial value of (W ,T,Y). Then

7 - > at at at
ta =~ t(W + — AW + == + -

where all the partial derivatives are evaluated at (W,T Y Y yhe )

Solving the least-squares system yields a solution of the form

AW [ Y Ag Aty
ik
1
AT _ 3 z% Bik Atik (9)
AY g
Y Gy Aty
ik ]

The coefficients Ay, By, Cy, and D are all functions of W, T, and Y, as well as

depending on the geometry of the seismic experiment. Values for them are derived in

Appendix A; the expressions become quite involved.

These equations (9) describe how the W ,T andY arising from a single point
diffractor at (z ,z ) change when the model is perturbed, and hence also the travel-times.
I intend, as the notation suggests, to identify (W ,T)Y) with (w(y,7),r,y). This
identification deserves some discussion. The definition of migration slowness by maxim-
izing the energy in the image is not tractable for easy analytical expression, since it is
fundamentally dependent on the wave nature of the original data. Hence I have substi-
tuted a definition based on ray tracing and travel-times. The two are not truly inter-
changeable, as a simple example shows. Consider again a single point diffractor in a con-
stant slowness medium. The travel-times would satisfy equation (7) exactly, so W would
equal the medium slowness w. The actual data which would be gathered by a seismic
experiment passing over the point diffractor could be represented to a reasonable approx-
imation by convolution of this travel-time pyramid with a wavelet. Assume the wavelet
is simple in form and of a fairly short duration. Think of pre-stack time migration as a
diffraction stack, or surface integral, along a pyramid shaped surface; the optimal migra-
tion slowness would be the one which maximizes this diffraction stack integral. For the

constant slowness medium, the migration slowness estimate could be expected to equal
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the actual medium slowness. The two definitions of w and W would thus be expected to
yield the same number. Now suppose that one trace has a large travel-time perturbation
introduced, shifting it by an amount greater than the length of the wavelet. The migra-
tion based estimate of w would not be affected by the single erratic value, since the best
diffraction stack would still be obtained by summing together all the remaining traces
along the same pyramidal surface as before and ignoring the trace with the large shift.
The least-squares estimate of W, on the other hand, might be shifted significantly by
such a anomalous travel-time point. However, such a dramatic change in only a single
trace could only be expected to arise from a large, very localized perturbation in the
underlying interval slowness model. Smaller, more broadly distributed changes in the
interval slowness would cause more gentle changes in the travel-time surface, and it is is
reasonable to expect that W would be adequately close to w. This is one of several
approximations I make which I expect may prevent this method from resolving high

wavenumber components of the velocity field well.

A further problem remains to be dealt with before I can turn to the question of
relating travel-time changes to changes in the interval slowness model, and complete the
derivation of the linear operator. I have found how W, T, and Y change for a fixed
diffractor point. However, what I really want to know is how w changes for a fixed
(y,7). Changing the model causes a given diffractor point to appear at a different (y ,7),
so I need to figure out not just how w(y,7) changes, but also which diffractor point it
represents in the updated model. Let primes indicate the perturbed model, so the
diffractor point associated with w (y,7) is associated with w’(y'7) for the new model.

Let Aw =w'-w, Ay=y'-y, and Ar=7—-7. Also, let the partial derivatives of w rela-

tive to a fixed (y,7) be indicated by the usual partial derivative notation %, etc., and
m

let the partial derivatives relative to a fixed diffractor location (z,2) be denoted by %51_0_,
m

etc. Then I have

w'(y' )y~ w(y,n+ Y 66w Am,, (10)

p,49Mpq

Also to first order, I have,

dw'’ . Ow
S ~ = (11)
¥l Y lw.n
and
' d
e ~ (12)
(v',7) Tl
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I can then write

w'(y,) ~ w'(y'-Ay ,7-A7)

a !
~w'(y',7) - 512-,— Ay - au; AT
' lw') (v'7)
6 0 d
~ w(y,n) + 26mw Am,, - 8_w - —5& AT
p .9 °Mpq Y lw.» (¥,7)
_ Ow by dw ot
~ w(y,7 m Am,, - — Am
2.0 0Mpq "oy 2 g 0Mpq " 7.0 0Mpq -

I now make the identification of (W, T ,Y ) with (w (y,7),7,y ) and get

awij o [ ] aT,] [ ]
ampq

The derivatives of w with respect to 7 and y can be evaluated by finite differences. The

(13)

derivatives of W, T, and Y with respect to the model have been recast previously in
terms of derivatives with respect to changes in travel-times. To complete the lineariza-

tion, I need a relation between Aty and Am,,

I follow Toldi’s methodology again, tracing rays and using Fermat’s principle. The
major difference is that a point perturbation in m affects not just one midpoint and
offset, but a family of them, since the same ray may be followed for many different com-
binations of midpoints and offsets. 1 index midpoints by the subscript ¢ and offsets by
k. The subscript a refers to the anomaly coordinates. For a given ray S; one has

ta = [ dSym(z,,2,) (14)

Slk
Invoking Fermat’s principle, I perturb the model and calculate the changes in travel

times integrating the slowness perturbations along the unperturbed ray Sy :

Aty = [dSy Am(z,,2,) (15)

Stk
This last calculation is valid for quite a general model, but to apply it directly requires
tracing many rays at every iteration. I choose instead to analytically evaluate these
derivatives against a simple constant slowness background model for which the ray
paths are straight, and use these approximate values in place of the more accurate
values which would be calculated by ray tracing using an iteratively updated model.
Should greater accuracy prove necessary, it might prove possible to calculate similar

results for a depth variable background model; I have not yet done so.
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I now calculate what the travel-time derivatives would be in a simple, constant
slowness reference medium. Figure 1 shows the geometry of the ray path for a particular
diffractor point, midpoint, and offset. Represent the travel-time data as (¢; ,y; ,h; ). Let
the subscript d refer to the coordinates of a particular diffractor point, and let the sub-
script a refer to the location of a slowness anomaly, that is, a particular element of the

model m. Using the notation of figure 1, equation (15) becomes

§ o
Aty = g{dxa zfadza Am (7, ,2, )[ cosé,'k + cos;;k ] 16)
where
6y = 8z -y +uy (2,)] (17)
and
g = 8z —y'—pix (2, )] (18)

Rewrite equation (9) as

AW(Y,T)=—= 3 3 Au Aty (19)
Pk

STk

and substitute from eq (16) for AT to yield

1 1 i
AW(Y,T)= — Ap [ dz, [dz, & %
(Y,T) > 2’3 %} i zj; xa;f 2, Am (z, ,za)[ coslz + cosby ] (20)

a

Pull the integrals outside of the sums and make the identification of W (Y ,T) with
w (y4,74) to get

Aw (yd ,Td) = fdza fdza GW(yd 1Td s%a 1% )Am (xa %8 ) (21)
z, 2,
where
Ny N 4 6 8
G (Ya 7 %0 170) = £l =+ = 22
W( d d a a ) iglkz__;l D cosoik Cos¢ik ( )
. . . . . Wi . .
This Green function Gy (y4,74,%,,2,) can be identified with ——in equation (13);
pq

they both represent the change in w (y,7) due to a perturbation in m (z,2). Evaluation
of the the Green function Gy in a form suitable for implementation involves substitut-
ing for the trigonometric terms in equation (22) and using the delta functions to elim-
inate one of the sums; details may be found in Appendix B. The result for Gy, is

18

Gy 12 0.20) = 255 [rd+witomawa ) | x (23
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y+h

FIG. 1. Geometry of rays for a single diffractor point and a constant background slow-
ness. The rays for a single trace with midpoint y and offset A are shown. The
diffractor is at (z4,2;4). The point in the model at which the slowness is perturbed is
designated by (z,,2, ). The quantities 8 , ¢, u, and y’ are used in calculating the effect
on the travel-time of perturbing the slowness.

E [ A (y =77, +hk )hk‘) + A (y =T, "hk 7hlc) ]
k=1
where
w Ty
V= (24)
W Ty —2,
L . : 0Ty
One can also write similar Green function representations for Gy (y;,74,%,,%, ) = 3
Mpq
Yy . L . .
and for Gy (yg,74,24,2, ) = 3 simply by substituting B;; or Cy in place of A in
Mg

equations (22) and (23).

From the above discussion, Equation (13) becomes

ow dw
Giipg = (Gw)ijpg — [W] (GT )ijpg — [a—y] (G )ijpg (25)
1] %)
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I have thus written the migration slowness perturbation directly as a linearized function
of the interval slowness perturbations and G is now in a form suitable to incorporate in
an optimization algorithm of the same general outline as used in the 1-D example. The
new 2-D algorithm has the same form as the 1-D except that now all midpoints must be
considered, and the computation of G is much more involved. The steps for computing

G as developed above can be summarized as follows:

For each (y;,74)
dw w(ys +Ay 7 )-w (y4,74)

Calculate ~~
y Ay
A
Calculate Ow ~ 2 (ya ,7a +A7)-w (y4,74)
or AT

Calculate D (w (y4,74),y4 74) by eq. (A8)
For each (z,,z,)
Calculate 4 by eq. (24)
For each h;
Calculate A (w (y4,74 ),44 74 ¥ =%, +hi by ) by eq. (A5)
Calculate A (w (y4,74),y4 74,y =72, —hy ki) by eq. (A5)
Calculate corresponding B ,C values by egs. (A6) and (A7)
End loop over h;
Calculate Gy (yq,74 ,24 ,2, ) by eq. (23)
Calculate corresponding Gr and Gy
Calculate G (yq,74,2, ,2, ) by eq. (25)
End loop over (z, ,z,)

End loop over (y;,74)

Note that, despite the debauch of indices in equation (25), G can still be treated as a
matrix, albeit a large one. Note also that many elements of G are actually zero. I do
not consider turning rays, so the loop over z, can end at z, <7;/w(y;,7;). The loop
over z, can also be limited by considering the maximum travel-time represented in the
data, since travel-times for very wide angle rays may exceed the recording limit. As a

reasonable approximation (based on straight ray paths), I expect G to be zero for

T, >2, V (1—7’2/t rr%ax )
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DISCUSSION OF IMPLEMENTATION

Both the one and two dimensional algorithms begin by generating a suite of pre-
stack time migrated sections and computing E' at each point in each section; this space
of reference migrated images effectively constitutes the “data space” for the inversion.
The 2-D algorithm uses the data at all midpoints simultaneously during the velocity
analysis; the 1-D algorithm may be applied to selected midpoints once the data space has
been constructed. However, since much of the cost of the velocity analysis is computing
the data space of reference migrations, I shall assume that the 1-D algorithm is also to
be applied at all midpoints. The starting model ra for the 2-D algorithm will probably
be slowness as a function of depth only, to make computation of the initial W easy. The
starting model for the 1-D case would be the same, or possibly just a single slowness con-
stant with depth.

As Toldi discussed in his dissertation (Toldi, 1985), there are several major
enhancements possible on the basic algorithms of the kind presented here. Smoothing
the energy panels over slowness for the first few iterations can help make up for a poor
starting model. Use of conjugate-gradient methods such as Partan (Luenberger, 1973)
should lead to a large acceleration in convergence. The basic idea remains the same as
in the simple steepest-ascent method outlined here, but the gradient information is
incorporated in a more efficient manner in such methods. Toldi found that it was not
necessary to recalculate G at each step, and that re-using the same G for several itera-
tions gave entirely acceptable results. If this proves true here also, it will provide a sub-
stantial speed-up, since once the reference migration data panels are calculated, most of
the work of the algorithm appears to be involved in calculating the G matrix. I note in
passing that dropping the G and Gy terms from equation (25) should still give a con-
vergent velocity analysis algorithm; I expect that the resulting velocity model would be
systematically distorted in the same manner that a time migration mispositions events
relative to a depth migration, since the terms incorporating the lateral and depth correc-
tions have been suppressed. This may provide a useful check during testing of the algo-
rithm. Finally, it may prove possible to cut down the size of G, and hence the run time,
by considering only a fraction of the points on one or more of the y,;, 74, z,, or 2, axes.
Since the energy function is smoothed over time, sub-sampling 7, may be quite accept-
able. Sub-sampling z, or z, would result in a lower resolution velocity model, which
may be good enough; it may not prove possible or desirable to attempt to resolve the

highest wavenumber components of the model.

Toldi also discussed the incorporation of constraints during the optimization. In

particular, I shall probably want to include smoothness constraints in z and z. I expect
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the high wave number components in both z and z to be the least well determined.
For the 1-D algorithm, I certainly do not want to allow the model to vary rapidly in z,
since that would contradict the underlying theory, which assumes that w varies laterally
only slowly if at all. One simple way to incorporate such smoothness constraints is to

add penalty terms to the objective function Q :

Q (m) - E E(wij (m):yi 1Ty ) - mT( ﬂ DxTDx + € DzTDz )m (26)
i,

where 3 and € would be adjustable damping parameters determining the degree of lateral
and vertical smoothing to be used. For further discussion of how to include such con-

straints, see Toldi (1985), Claerbout (1976), and Menke (1984).
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APPENDIX A

LEAST SQUARES SOLUTIONS FOR W, T, AND Y

In this appendix I derive expressions for least-squares solutions for W, T, and Y .

The set of equations to solve are given by

(W D at ot ot
te ~t(W,T,Y)+ 8WAW t 57 AT + GYAY (A1)

To make the notation more compact, denote the partial derivatives by subscripts:

ﬂEtw , ete. Explicitly,

ow
tw . W(y—h-Y)?
tr | = T (A2)
2 2 2
o VT W y-h-Y) WY -y +h)
. W(y+h-Y )
* \/ 2 2 _v\2 T

I then need to solve the follow system of normal equations for (AW ,AT AY):

,E% (tw)ix Aty | [ g (tw )i ,Z% (tw )ik (t1 )ik 1216 (tw )ix (ty )ik W AW
Y(tr)adte | = | Y (twlaltr)a X (tr)i () (ty)a || AT |(A3)
ik ik ik ik AY

Ek (ty Jix Dty Zk (tw ix (ty Jar % (t1 )ix (ty )ik 2% (ty)i

This matrix equation has the solution
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[ Y Ay Aty ]
ik

AW
AT |=21 | »B, At
AY b

Y, Gy Aty
ik

where
2
Aik == Z(tT )r2s Z(tY )r2s - [E(tT )rs (tY)rs ] ](tW)ik
S0 e (17 )re T e (i Yre = 2w Yoo (2 )re S2tx)2 | (b2 )it
+ - E(tW )rs (tT )rs E(tT )rs(tY)rs - E(tw )rs (tY)rs E(tT )r2s - (tY)ilc
By = | Stw e (tr )re 5302 )re by e — Xtw )re (7 )0 Nty )2 ](tw),-k
3 2
| 22 02 - [ 5w by ) ] }(tm
=+ [ E(tW)rs(tT )rs Z(tW )rs (tY )rs - E(tW)r% E(tT )rs(tY)rs ](tY)ik
] r,s r,s r,s r,s
Cik' -

E(tW)rs(tT )rs E(tT )rs (tY)rs - Z(tW)rs(tY)rs Z(tT )rzs ](tW)ik

r,s r,s r,s r.,s

r,s r,s r,s r,s

[ 2
| D)2 N - z(tw),s(tm] }(tm

r,s r,s r,s
-

2
D = Ytw)2 Xtr)2 Nt )2 - 5tr)2 [ 50w ) (1) ]

r,s r,s r,e r,s r,s

+ 2 E(tW )rs (tT )rs E(tW )rs (tY)rs E(tT)rs(tY)rs

r,s r,s r,s

2 2
)2 [ 5 (), ] S50 [ St (i), J

r,s r,s r,s r,s
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+ F Z(tw )rs (tT )rs E(tW)rs (tY)rs - E(tW)r?? Z(tT )rs(tY)rs ] (tT )ik

(A4)

(A5)

(A6)

(A7)
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It would be nice if closed form solutions or approximations could be found express-
ing these many summations as simple functions of the upper and lower bounds; none are
apparent to me yet. Toldi was able to approximate his analogous, but much simpler,
sums by integrals which could be solved explicitly. Unfortunately, not only do the
integrals become quite complicated here, but if my computations are correct, they give

rise to elliptic integrals which cannot have simple closed form solutions.
APPENDIX B

DERIVATION OF THE GREEN FUNCTIONS Gy, G, AND Gy

In this appendix I derive explicit expressions for the Green function matrices Gy,

Gr, and Gy. Consider first equation (22)

Ny N4, 6 8o
Gwl(yy, 74,7, ,2, ) = ik L4 B1
I first look at the sum containing é,.
NN A (g kg )8y
(GW)l(yd yTd 124 1%, ) = iglkgl m_ (B2)
Substitute
~-1/8
cosf = 14 [rf+w 2y -h -y, )? ] (B3)
wT
SE.L I (B1)
w Td —Za
y =2 (B5)
’Y
and
h
B
to get
61 = 8lz, —y i (24 )] (B7)
25[%— y—h } (BS)
i
= v 6] vz, ~(y-h )] (B9)
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and then

N N wA (uohe) [rdrw Xy —hve)? | 8l e (ui-ha )
(GW )l(yd iTd 1%g 1%a ) - E Z

i=1k=1 (w Td —%q )D

(B10)

- L [rf+w2(vxa—yd )2]1/2 S 3 A (v ke ) 6] vz, (v —hy)]  (B11)
Td i=lk=1

The double sum thus contains non-zero terms only when y;-hy=z,. N,, the
number of midpoints, is generally much larger than N;, the number of offsets, so equa-
tion (B11) reduces to

N,

12
(GW )1(!/.1 1 Td 12 ;za) = T:D [sz+w2(’71a —Yq )2] E A (y=’7xa +hy 7hlc) (B12)
=1

I note in passing that the y in the above equation will now usually not fall on a grid
point y; ; the value of A can be calculated by interpolation between the values of A at
neighboring grid points. By a derivation similar to that of equation (B12), the sum in

equation (B1) containing 8, becomes

N,

1/2
(Gt 72,20,20) = 25 [rdvwioma)? | 5 A ly=rm, b ) (B13)
k=1
SO
12
GW (yd 1 Td 1 Tg 1%, ) = 1 [Td2+w2(7xa =Yq )2 ] X (B14)
Td D
N,
> [ A (y =, +he b ) + A (y =72, —hy by ) ]
k=1

The expressions for Gy and Gy are identical except for substituting B and C for A .

SEP-44



