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APPENDIX A

Effect on Stacking Slowness of a Perturbation in Traveltime

If the interval slownesses are changed by a small amount, the traveltime to a given
reflector will change for each offset within a midpoint gather. This will produce the

change in stacking slowness given by equation (4.3) of the main text:

Aw, = — : (A.1)
w

Thus the stacking slowness response is a weighted sum of the traveltime perturbations.
These weights are calculated in this appendix.

z? in equation (A.1) is the mean square offset. This is just a constant that

depends on the recording geometry, that is the range of offset values used.
7 1L &2
Tt = — ¥ (A.2)
n o,

The constant n in equations (A.1) and (A.2) specifies the number of offsets. The

minimum and maximum offsets are respectively 4 and L . Thus,
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where, by definition,

b :T[W—(L—_x?)] (A.4)

Note that for z4 = 0,



b o= 1. (A.5)

Similarly,

Lz, | 5 5 9
L3 o b2L2
= nl? — 5~ = nL%a (A.6)
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where a is defined to be

3 5 2r 2
_ L B To - b°L ‘ (A7)
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Note once again that for 25 = 0,
4 ;2
= — L A8
Equations (A.3) and (A.6) can now be substituted into equation (A.1) to give:
n bl 2
W, anlL

Once again, the constants ¢ and & are defined in equations (A.7) and (A.4) respectively.

For zy = 0, a takes the simple form given by equation (A.8), and b = 1.

Thus, the change in stacking slowness given by equation (A.9) reduces to

(A.10)

Equation (A.10) is identical to equation (4.4) in the main text.
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APPENDIX B

Flat Reflectors, Depth-Variable Background Slowness

This appendix derives the linear relation between interval slowness and stacking
slowness for a background medium that consists of flat reflectors with depth variable

interval slownesses. The development proceeds along the same lines as section 4.3 of the

main text.

Equation (B.1) is the equation for the response of stacking slowness to an impulse

of anomalous interval slowness (it is the same as equation (4.11) in the main text):

z =L
L? ) t(y, %, %)
G(yxzr;yaiz): f 132—— - N\ (Bl
’ 2 3 w, (y, 2,) )

5(ya_y+u(y:zr:x:za))+5ya_y"u(ylZr;I:Za))
cosb(y, 2z, ,z, 2,)

For clarity, equation (B.1) includes all of the dependencies for each of the raypath vari-
ables. Equation (B.1) is valid, provided the raypaths are symmetric about zero-offset.
Thus, it does not depend on an assumption of a constant background slowness. The

symmetry of the raypaths will also hold for a laterally invariant background model, pro-

vided the reflectors are flat.

Figure B.1 shows the raypath to a flat reflector at depth z,, for offset z and mid-
point y. Each such raypath can be described by its ray parameter p(z,, z). Because
the medium is laterally invariant, the ray parameter depends only on the offset and
reflector depth; it is independent of the midpoint. Thus, most of the variables of the
linearization (i.e. in equation (B.1)) can be expressed in terms of the ray parameter

p(z,z):

(B.2a)
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FIG. B.1. Raypath to a flat reflector at depth z,, for offset z and midpoint y. The
raypath is based on the depth variable background slowness, w (z, ).
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and

2,

(W, z,2) = [ dea (B.2)
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Equations (B.2) express the raypath-dependent variables analytically. The only
problem is that determining p for a given z, and z requires the solution of a two point
ray-tracing problem; p(z,,z) must therefore be determined numerically. The
simplification offered by equations (B.2), then, is that the raytracing must be performed

at only one midpoint.

For the constant background slowness, a convolutional form of equation (B.1) was
derived. The derivation first assumed that the offset was a continuous variable, then
changed the argument of the raypath delta function to directly depend on offset. This

change of variables was made possible by the simple form of equation (4.14), that is

2r

Zr —2a L’
b= Y-y, = :}:—g-[ J = i%[T (414)
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Unfortunately, for the depth variable case presented here the analogous equation, (B.2Db),
does not provide an analytic expression between p and z, because the p (z,, z ) must be
determined numerically. This means that equation (B.2b), unlike equation (4.14), cannot
be inverted analytically to give z as a function of y,, z,, y and z,. Certainly, the
impulse response could be determined numerically, if one were to tabulate the values of
r given by equation (B.2b) for different values of  and z,. Then, the appropriate value
of z to select from the integral in equation (B.1) could be determined from this table, as

the value of z corresponding to y,, 2,, ¥ and 2, .

A simple approximation to the exact equations (B.2) does, however, lead to a con-
volutional form for the depth variable case. An expression that approximately describes
the raypaths is:

L' (2, 2)

—~ x
I“l’(yrzr;xyza)’\“ L E

(B.3)

Equation (B.3) says that the y coordinate of the raypath for offset z varies with depth
exactly as does the raypath for the largest offset L . This results in a value of p which,
although not exactly accurate, differs from the constant background ray in the proper
direction. Now only one ray must be traced numerically for each reflector; the result is
the function L' (z,, z,). Thus all of the detailed depth variation is contained within
the variable L' .

As long as the offsets are not too large, or the depth variation of interval slowness
not too great, one further approximation can be made: the background traveltimes obey
the hyperbolic moveout equation. That is, make the assumption that the standard velo-

city analysis method is valid for the background medium. Thus,

2 2 )
Y2, 2) = wom, (274457 ) (B.a)
and then
1
w, (¥, zr) = Wy = (B'4b)
vrms ’

Equations (B.3) and (B.4) can now replace the appropriate variables in equation
(B.1). The result is exactly the same as equation (4.19), with the depth variable version

of L' replacing the constant slowness version.
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