Chapter 2
One-Dimensional Velocity Analysis without Picking

2.1 OVERVIEW OF CHAPTER

By changing the interval-velocity model, the velocity-analysis algorithm proposed in
this thesis searches for the stacking velocities that correspond to the maximum values of
semblance. Because the search is model driven, a key component of the algorithm is the
theory connecting interval velocities to stacking velocities, v, (v;, ). The simplest such
theory has v, equal to the rms average of the v;, . A more generally applicable theory

would relate v, and v;, through the traveltimes, that is as v, [t (v, )].

The algorithm can also be examined in a general way that emphasizes the search
itself. Viewed this way, the theory connecting interval velocities and stacking velocities
is just a detail; either of the two theories mentioned above could be used. This general
view is the one taken in this chapter. The search algorithm is emphasized by the use of
the simplest theory: stacking velocity equals the rms average of interval velocity. Furth-
ermore, this chapter studies the algorithm for a simple dataset: a single CMP gather.
The next chapter then extends the theory connecting interval and stacking velocities to
allow for laterally varying velocities. Although the theory becomes more complicated
than a simple rms calculation, the structure of the search algorithm is identical to the

one used in this chapter.

Fundamental to any algorithm that searches for the best model, is a means of
evaluating a model. The evaluation is embodied in what is known in optimization
theory as an objective function—that is, the function to be maximized. The objective
function used here evaluates a model by looking at the semblance values corresponding
to v, (v, ). Next, a new model must be selected for evaluation. How should this selec-
tion be made? This question is answered as follows: look along the direction of the gra-

dient of the objective function, taken with respect to the model.
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The basic algorithm is then enhanced by a more sophisticated, conjugate gradient
search. An even more important enhancement explicitly incorporates a priori informa-
tion about the interval velocity model into the algorithm. Finally, the algorithm is illus-

trated with several field-data examples.

2.2 BASIC SETUP; DEFINITIONS AND NOTATION

For this chapter, the model takes an especially simple form: a series of homogene-
ous layers. Although one could choose the model parameter for each layer to be interval
velocity, I use instead interval slowness, where slowness = 1 / velocity . Likewise, in
place of stacking velocity, is used stacking slowness. This choice of parameters will

prove quite useful in the next chapfer.

The model can be specified by a vector m, in which each element is the interval
slowness for one layer. Corresponding to this model m, will be a stacking slowness vec-
tor w(m), in which each element w;, is the stacking slowness at one particular zero-
offset time, 7;. Because the layers are chosen to be of equal traveltime thickness, the
zero-offset times, 7;, will be evenly spaced. Note that throughout this thesis bold char-

acters represent vectors.

Figure 2.1a shows an interval slowness model m with 100 layers, each of thickness
.04 seconds. Figure 2.1b shows the corresponding stacking slownesses, w(m). Because
this chapter assumes that stacking velocity equals rms velocity, each value of w(m) is
formed by means of the standard rms calculation, recast in terms of slowness. That is,
the stacking slowness at 7;, w;(m), is calculated from the interval slownesses in all

layers shallower than 7; as

, 1 ) e
i

w; (m) = m = W . (2.1)

; 2
j=1 m]

2.3 OBJECTIVE FUNCTIONS

The fundamental question in velocity analysis is, how do we know if one model is
better than another? To answer that question, this thesis proposes the following two-
step procedure. First, calculate the stacking slownesses predicted by the interval-
slowness model to be tested—that is, calculate w(m). This calculation gives a set of
stacking slownesses w, with one element w; for each zero-offset time, 7; . These stacking
slownesses and zero-offset times can then be used to define hyperbolic summation trajec-

tories over offset, with
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FIG. 2.1. a) Interval slowness model m. b) Corresponding to m are stacking slownesses
w(m).

t2 = 1,2+ w; {m) z?. (2.2)

Equation (2.2) is the NMO equation, rewritten in terms of stacking slowness. Thus, the
second step consists of performing NMO according to w(m), and then stacking over

offset. The larger the power in the stack due to w(m), the better the model m.

This measure of the quality of m can be written as

2
1
2

Qy(m) = Z[ZD[IJ = (1;* 4 w; (m) z?) (2.3)

D (z,t) are the data in a CMP gather. The outer sum of equation (2.3) derives the

total power in the stack by adding up the contributions from each zero-offset time 7;.

The criterion @ ;(m) of equation (2.3) favors the large-amplitude parts of the data.
Thus, instead of @, a normalized measure is more appropriate; here I replace the stack

power with a normalized sum, the semblance. The measure of quality becomes

Q(m) = ¥ S(w(m), ), (2.4)
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where S (w; (m), 7;) is the semblance at zero-offset time 7; and stacking slowness w; (m):

2

1
z,t =(752+w£2(m)$2)2]

D

S(w;(m), ;) =
AL

(2.5)

1 2
x,tz(r,-2+w,-2(m)x2)?]]

In practice, the numerator and denominator of equation (2.5) are summed over a time
window large enough to include the seismic wavelet. The length of the time window can

be different for the numerator and the denominator.

Thus far, the evaluation of the model m has taken the following form:

for each zero-offset time 7;

{

calculate stacking slowness, w; (m) (equation (2.1))
calculate semblance, S (w; (m), 7;) (equation (2.5))
}

add up the S(w; (m), ;) from all 7; (equation (2.4))

The problem with this form of the algorithm is that every time a new model is
evaluated, the semblance must be recomputed. This means that the sums over offset of
equation (2.5) must be recalculated for each model. This problem can be overcome if the
algorithm is reorganized to start with the same first step as the conventional velocity-
analysis method: calculate semblance for a range of w and 7 values. Provided that this
range is sufficiently large, any S (w;(m), 7;) required by equation (2.4) can then be

derived through interpolation between these precalculated S(w, 7).

Thus, by using the same first step as the conventional method—the precalculation
of a plane of semblance values S (w, 7)— the algorithm of this thesis takes an attractive

form:

calculate S (w, 7) for a suitable range of w and 7

for each zero-offset time 7;

{

calculate stacking slownesses, w; (m) (equation (2.1))

calculate S (w; (m), ;) by interpolation between the S (w, 7)

}

add up the S (w; (m), 7;) from all 7; (equation (2.4))

Because most of the cost is in the initial calculation of S(w, 7), this form allows for the
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repeated evaluation of models at little extra cost.

This form of the algorithm also provides a clear geometric insight into the evalua-
tion process. Figure 2.2 shows two different interval-slowness models and their
corresponding stacking slownesses. The first model, t of Figure 2.2a, has the same
interval slowness at all depths. The second model, m of Figure 2.2b, has interval
slownesses that vary with depth. Which model better describes the data in a particular
CMP gather? The answer is provided by a sum through the semblance panel S(w, 7)
for the CMP gather, along the curves w(rh) and w(m) of Figure 2.2c and 2.2d.

Figure 2.3 illustrates this evaluation process. It shows the stacking slowness curves
of Figure 2.2¢c and 2.2d, overlaid on a contour plot of the semblance values S(w, 7) for
the CMP gather. For this example,

S (w;(m), ;) > S(w;(th), ;) forall i (2.6)
Thus,

Q(m) = ¥ S(u;(m), ) > ¥ S(w (), 1) = Q)

which says that model m is better than model th. Thus, according to the objective

function @ (m) of equation (2.4), the closer that the curve w(m) is to the peaks of the

semblance plane, the better the model m.

Because the algorithm does try to find the peaks of the semblance plane, one might
wonder how this differs from an algorithm that tries to fit picked peaks. The difference
arises from the way that it interacts with a priori information about the model. As will
be shown in a later part of this chapter, an extra term can be added to the basic objec-
tive function of equation (2.4), which makes the algorithm also try and satisfy a priori
information about the model. For example, the extra term could make the algorithm try
for a smooth model. Such a term can also be incorporated into an algorithm that tries

to fit picked peaks.

As long as the semblance peaks are pulling the algorithm in a direction that is not
too inconsistent with the a priori information, the difference between the algorithm of
this thesis and one based on fitting picked peaks will be small. However, when spurious
peaks are present, due to coherent noise such as multiple reflections, the algorithm of
this thesis will be better able to ignore those peaks. The reason is that in the original
semblance plane the spurious peaks only affect the solution over a limited range of
slownesses; the corresponding picked peaks would influence the solution over an infinite

range of slowness.
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FIG. 2.2. Two interval slowness models and their corresponding stacking slownesses. a)
A model, m, which has the same interval slowness at all depths. b) Another model, m,
which has interval slownesses that vary with depth. ¢) The stacking slownesses
predicted by the model m. d) The stacking slownesses predicted by the model m.
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FIG. 2.3. The stacking slownesses curves of figure 2.2 overlaid on a contour plot of the
semblance values for this CMP gather. These curves act as summation paths through
the semblance values. The straight line is w(ri). The curved line is w(m). The contour
interval is .05 (semblance ranges from 0 to 1).



-15-

The example shown in Figure 2.4 illustrates this point. The series of peaks on the
right side of Figure 2.4a are regularly spaced in time and are all at water slowness (.667
s/km): they are water-bottom multiples. Superposed on the contour plot of semblance
values is a stacking slowness curve corresponding to an interval slowness model. Because
the stacking slowness curve is out of the range of the multiples, they will contribute

nothing to the sum of equation (2.4).

On the other hand, consider how an algorithm based on picked peaks would handle
the same data. Suppose that for each zero-offset time, 7;, of Figure 2.4a, the stacking
slowness at the peak of semblance, W;, was picked. Then, a model m could be
evaluated by the determination of how well its stacking slownesses w(m) fit the picked

stacking slownesses, W. A weighted least-squares criterion would then be,

2
Rt o

Qus(m) = Df4; - 5

The constants o; and A; are the width and height of the peak picked at time r;. The

criterion is written in this fashion so that it is maximized when w(m) is close to W.

At any zero-offset time, equation (2.7) says that the quality of the model m
decreases with the square of the distance of the stacking slowness value w; (m) from the
picked peak location W;. For the first 1.5 seconds of the data in Figure 2.4a, the peak
locations would surely be those of the multiples. Thus, equation (2.7) pulls the solution

back towards the multiples, no matter how far away the solution gets.

Like equation (2.4), equation (2.7) evaluates the model m by summing over time,
along the curve w(m). The difference is that instead of summing through a plane com-
posed of the original semblance values S(w, 7), equation (2.7) sums through a plane
composed of parabolas centered on the picked peaks. A comparison between Figures
2.4a and 2.4b illustrates this point, showing how the fit to picked peaks greatly increases
the range of stacking slownesses affected by the multiples. Indeed for the least-squares
criterion of equation (2.7), the further the solution is from the peak, the harder the pull.
Although the strength of this pull could be lessened if the least-squares criterion were

replaced with an absolute-value criterion, the infinite range of influence of the multiples
would still hold.

The algorithm of this thesis, however, by using the original semblance values,
retains the original range of influence of any peak. Once the solution has been pulled
away from the multiples, it no longer feels them; indeed it may find some other, smaller

peaks at the new location. The need to also satisfy the a priori information is what pulls
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FIG. 2.4. a) The algorithm of this thesis evaluates a model m, by summing through the
semblance plane along the stacking slowness curve w(m). Note the strong water-bottom
multiples at the right side of the figure. b) The evaluation of a model m by an algo-
rithm based on a least-squares fit to picked peaks. The same summation curve w(m) is
used, but instead of summing through the original semblance plane of 2.4a, it sums
through a plane composed of parabolas centered on the picked peaks. Using a fit to
picked peaks greatly increases the range of stacking slownesses affected by the multiples.

the solution away from spurious peaks. Finally, when the model implied by the peaks is
not too inconsistent with the a priori information, the algorithm will perform as well as

an algorithm based on picked peaks.

2.4 CHOOSING THE NEXT MODEL

The first part of this chapter has attempted to answer the question: how can we
know if one interval slowness model is better than another? The proposed answer is
based on a look at the power in a CMP stack (specifically the function @ (m) of equation
(2.4)). But knowing how to compare two velocity models is only the beginning of the

solution. How do we choose that second model?

This second question is directly addressed by optimization theory; indeed it
classifies methods according to the type of information they use in choosing a second
model (Gill, Murray and Wright, 1981). In general, the level of information used about
the derivatives of the function @ (m), the so-called objective function, is the key con-

sideration in this classification. The simplest methods use no derivative information at
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all; they just repeatedly evaluate the objective function.

The very simplest such method would try every possible model. For the velocity
analysis problem such a method is clearly not practical. (If every one of the 100 parame-
ters of a velocity model were allowed to try any of 50 values, 50'® models would need to
be tested.) There are cleverer ways of searching through models than the simple exhaus-
tive search. Rothman (1985) and Ronen and Claerbout (1985) have successfully applied

different non-derivative methods to the residual statics problem.

The next level of methods use information about the first derivative of the objec-
tive function. In particular, the gradient of the objective function, taken with respect to
the model parameters, indicates the direction of maximum increase of the objective func-
tion. This gradient is a natural choice of direction in which the next model point can be
sought. By always changing the model in a direction that increases the value of the
objective function, first-derivative methods can be more easily trapped in local extrema
than can non-derivative methods. First-derivative methods thus depend more strongly
on the starting position than do the non-derivative methods. They do, however, have a

distinct advantage of speed.

The algorithm used in this thesis is an enhanced first-derivative method, the
conjugate-gradient method (Luenberger, 1973). The essential elements of the algorithm
can be demonstrated by a simple gradient method. Let @ (m) be the objective function,
evaluated for model m. Furthermore, let yv,,@ be the gradient of the objective func-

tion with respect to the model parameters. A simple gradient-ascent (steepest-ascent)

algorithm proceeds as follows:

At a given model point 1, form v, Q@
Search for o that maximizes Q (fh + o v, Q)

Update m by setting m = m+av,Q

Ll S

If the algorithm has not converged, go to 1.

Calculating the gradient, v, Q

Velocity analysis calculates @ (m) through the intermediary of stacking slowness.
That is, @ (m) is more properly @ [w(m)]. (Recall that when m is evaluated, the curve
w(m) is first calculated, then this curve is used for the summation through the sem-
blance panel.) The j* component of the gradient can thus be expressed, with the help

of the chain rule of partial differentiation, as
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oQ
(Va@);, = (2.8)
m J amJ m =
. i=Zn’r 6Q aw’.

In equation (2.8), the index j refers to the interval slowness in the j ' layer, the index ¢
to the stacking slowness at time 7;. The sum in equation (2.8) includes all stacking
slownesses that could be affected by a change in the j*! model parameter. All deriva-

tives are evaluated at the current model point m.

The derivative dw; /dm; in equation (2.8) is calculated from equation (2.1), the

equation defining w(m):

aw,- Tj—Tj_l I:w,- (m

| 3
am, ] for j <7 . | (2.9)

J
=0 forjg > 1 .

The derivative is zero for j > i, because the stacking slowness at time 7; will not be

affected by changes in the interval slownesses of deeper layers.

Each derivative dw; /dm; in equation (2.9) can be thought of as a component of a

derivative matrix G = ow/om | _ With the substitution of this definition, equa-

m’

tion (2.8) can be rewritten as

(Va@);, = 'Ejori@_— G, (2.10)

t=nr .
= ¥ (veQ), Gy -
i=0 :
The gradient with respect to the model parameters can now be written as

Vi@ = GTVWQ . (2.11)

Note that equation (2.11) uses the transpose of G to connect the two gradients.
This use of the transpose can be understood in the following manner. The derivative
matrix G relates a perturbation in the interval-slowness model to the corresponding per-

turbation in the stacking slownesses. That is, in the linear approximation,
w(m) ~ w(m)+ G (m - nh) . (2.12)

When viewed this way, each row of the matrix G is seen to compute the appropriate
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stacking-slowness perturbation through a weighted sum of the interval slowness pertur-

bations (m — rh). Conversely, the transpose of G takes a perturbation in the ¢*! stack-

ing slowness, (va] ., and computes the corresponding model perturbation by “back-
)
projecting” [VWQ]. onto the parts of the model that might have caused it.
)

The gradient 7, @ contains the interaction with the data. If a weighted least
squares objective function (i.e. Qg of equation (2.7)) were used, this gradient would just
be the residual error. That is,

(vv@us ), = - —5 (Wi - wi()). (213)

: 1
Now consider the objective function of this thesis, equation (2.4),
Qlm)) = % §[wi(m), 7 ]
]

There is not an analytic expression for the derivative as there was for the least squares
problem; the derivative can, however, be determined numerically. In particular consider
one component of the gradient, dQ /dw;. This derivative expresses the change in the

value of the objective function due to a change in the ¢ component of the stacking

slowness.

Figure 2.5 shows the semblance as a function of stacking slowness for one zero-
offset time; the arrow points to the current value of w;(m). Thus, 3Q /Ow; can be
measured directly from Figure 2.5. The simplest way is with a two-point finite-difference

approximation:

_8Q S[w,-(m)+Aw,r,-]~S[w,-(m),1',- ]

(VwQ)i - aw,- —~ Aw - (214)

Aw is a small change in stacking slowness.

If the derivative of a smooth function, fit locally to the points shown in Figure 2.5
is taken, a finite-difference approximation involving more than two points results. Note
that if w; is near the peak that would have been picked, a smooth function based on the
three surrounding points would be exactly the quadratic function given in equation (2.7).
Additional smoothing of the semblance plane along the slowness axis will allow the
finite-difference derivatives to sense the peaks from a greater distance. This additional
smoothing may be necessary in the early stages of the iterative algorithm; it can then be

removed in the later stages, as the algorithm converges.
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FIG. 2.5. Semblance as a function of stacking slowness for a particular zero-offset time
7;. The value of w; (m) indicated by the arrow is the point at which the derivative is
being evaluated.

The preceding discussion has shown how the derivative matrix G and the gradient
with respect to stacking slowness v7,,@ are calculated. Their product, the gradient with
respect to the model parameters yv,,@ , defines the search direction. This search is of
the following form: find «, such that @ (fh + avy;Q ) is a maximum. Because @ (m) is
actually @ [w(m)], the search is more properly: find a, such that @ [w(th + av Q)] is
a maximum. This search can be considerably simplified by use of the linear approxima-

tion to w(m) given by equation (2.12). That is,
Q [with + av,Q)] = Q[w(th) + oGv,Q)] . (2.15)

Now the search consists of the evaluation of @ at a series of points that are linear com-

binations of two known vectors, w(rh) and Gv,Q .

A steepest-ascent algorithm

The previous discussion can be summarized by the following velocity-analysis algo-

rithm:
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A

Set m to starting model: m =
Set w to starting value: w = w(rh)

Calculate G by taking derivatives at m.

Begin loop on iterations
1. Form y,,@ at current model point m:

(Va0) — S(w;(m) + Aw, 7;) - S (w; (m), 7;)

Aw
Vm@ = GT v,Q
2. Line search for o that maximizes Q@ (m + o v,Q)
Q(m+0avnQ) — @wm)+aGy,Q]
3. Update model
m = m+avy,@
w =w+aG vy,

recalculate G by taking derivatives at new m.

End loop on iterations

As written, the algorithm requires that the matrix G be recalculated after each
search. In practice, G does not change too quickly; it can be recalculated every few

iterations.

2.5 EXAMPLE OF BASIC ALGORITHM

The ascent algorithm proposed in the last section can be illustrated by use on field
data. Figure 2.6a shows a CMP gather from the Gulf Coast in Texas; Figure 2.6b shows
the corresponding panel of semblance as a function of zero-offset time ahd stacking slow-
ness. The goal of the velocity analysis is to build an interval slowness model m, such

that the sum along the curve w(m) through Figure 2.6b will be maximized.

Figure 2.7a shows the starting model rh, which has the velocity of water until the
time of the first reflection (.2 sec); the model thereafter has interval velocities that
increase linearly with time. The model has 100 layers, one for each zero-offset time of
the semblance panel (the time increment is .04 s). Figure 2.7b shows the corresponding
stacking slowness curve, w(m), plotted over the semblance panel. This curve, w(rh), can
now be used as a summation trajectory through the semblance values of Figure 2.7b; the

resulting sum is the starting value of the objective function.

Now the ascent algorithm begins to search for the best model. Figure 2.8a shows

the stacking-slowness curves generated at 20 successive iterations. Throughout most of
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FIG. 2.6. a) A CMP gather from the Gulf Coast in Texas. b) Derived from the data in
a), contour plot of semblance as a function of stacking slowness and zero-offset time.
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FIG. 2.7. a) Starting interval-slowness model m. It has interval velocities that increase
linearly with time, which leads to the interval slowness curve shown. b) The correspond-
ing stacking-slownesses curve w(rh), overlaid on a contour plot of the semblance values.
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the semblance panel, the algorithm has quickly found the peaks of the semblance values.
But the stacking slownesses are only an intermediate result: the iterative process is

driven by the interval slownesses. The successive interval-slowness models are shown in
Figure 2.8b.

The interval slownesses can be converted to the more familiar interval velocities.
The interval velocities of the starting and ending models are shown in Figure 2.8c: the
shallowest layer has the velocity of water, the deeper layers have typical velocities for
the Gulf Coast. Note however, that the slownesses for the deepest layers have remained
near the starting guess. As will be seen shortly, this result is due to incomplete conver-

gence of the algorithm.

The rate of convergence can be seen in the value of the objective function at suc-
cessive iterations; these values are shown in Figure 2.9. This figure shows that most of
the change occurred in the first few iterations, during which the algorithm was finding
most of the peaks (see also Figure 2.8a). A closer look at Figure 2.9 shows that the
value of the objective function was still increasing when the iterations finished: the algo—

rithm had not entirely converged after 20 iterations.

This incomplete convergence can also be seen in Figure 2.8a at approximately 3.8
seconds. There, the stacking slowness curve at the twentieth iteration was still creeping
towards the peaks. This lack of convergence was directly responsible for the lack of

change in the interval slownesses for late times of Figure 2.8b.

This slow convergence is a familiar problem with the steepest ascent algorithm
(Luenberger, 1973). This problem is shown by the prototypical optimization problem of
figure 2.10: the search for the maximum of a surface with elliptical contours. When
there is a large eccentricity, the location of the maximum is better determined in one
direction than in the other. The steepest-ascent path, shown in Figure 2.10 as a solid
line, converges slowly in the poorly determined direction. Considerably faster conver-
gence occurs if the steepest-ascent algorithm is replaced by a more sophisticated,
conjugate-gradient algorithm; indeed when the two-dimensional problem of figure 2.10 is
solved with the conjugate-gradient algorithm, convergence is achieved in just two steps

(as shown by the dashed line of Figure 2.10).
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FIG. 2.8. a) The stacking slowness curves for 20 successive iterations, overlaid on a con-
tour plot of the semblance values. The stacking slowness curve of the starting model is
the curve that lies to the right of the peaks for early times (at higher slowness). b) The
interval-slowness models for the 20 iterations. c) Starting and final models of b), con-
verted to interval velocity. The shallowest layer has the velocity of water, the deeper
layers have typical velocities for the Gulf Coast.
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FIG. 2.9. Value of the objective function at successive iterations. Most of the change
occurred in the first few iterations. The algorithm has not entirely converged after 20

iterations.
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FIG. 2.10. Prototypical optimization problem: the search for the maximum of a surface
with elliptical contours. The steepest-ascent path is shown in figure 2.10 as a solid line;

convergence is slow. The much faster, conjugate-gradient path is shown as a dashed
line.

2.6 ENHANCEMENTS TO THE BASIC ALGORITHM

A particular implementation of the conjugate-gradient algorithm, known as Partan
(short for parallel tangents, see Luenberger (1973)), makes direct use of the geometric
characteristics shown in Figure 2.10. Instead of always searching along the gradient
direction, Partan combines the gradient with the previous ascent step, and thereby
moves directly to the peak shown in Figure 2.10. The remainder of the examples of this

thesis were generated using the Partan algorithm.

Except in its use of the Partan algorithm instead of the steepest-ascent algorithm,
Figure 2.11 is directly analogous to Figure 2.8. Although the difference between Figures
2.8 and 2.11 is subtle, it is most visible in the deep part of the data and model. There
the Partan results have moved farther away from the starting guess, than did the

steepest-ascent results.

A priori information about the model

The results of Figure 2.11 indicate that a conjugate-gradient algorithm can con-
verge faster than a steepest-ascent algorithm. But, if the conjugate gradient algorithm is
allowed to keep running, it will simply converge to the largest peaks of the semblance

plane. Because these peaks might or might not constitute a physically feasible set, little
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FIG. 2.11. Results generated with the accelerated, conjugate-gradient algorithm. a) The
stacking-slowness curves for 20 successive iterations, overlaid on a contour plot of the
semblance values. b) The interval slowness models for the 20 iterations. ¢) Starting and
final models of b), converted to interval velocity. Unlike the simple gradient algorithm,
the conjugate-gradient algorithm has converged on the peaks at 3.8 seconds.

would have been gained by the use of the model-driven, velocity-analysis algorithm of
this thesis. Thus, this algorithm does more than simply find the largest peaks of the
semblance plane only when additional a priori information about the model is explicitly

included.

This information provides conditions that the algorithm should try to satisfy, in
addition to finding the peaks of the semblance plane. Although this information applies
to all components, it most strongly influences those components to which the data is
least responsive. These poorly determined components are of two kinds. First are those
components that are diminished by the matrix G. The deep layers of the model affect
only the stacking slownesses at the latest times, whereas the shallow layers affect stack-
ing slownesses at all times. Thus, the deep layers have the least effect on the data.
Indeed these deep layers were the cause of the slow convergence in Figure 2.8. The
second type of poorly determined component is a model layer that is between times at

which there are no peaks in the semblance panel.

For either of these kinds of poorly determined components, the ideal a priori infor-

mation would be a set of velocity values that are expected for the dataset. This
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information might be available from earlier work in the same area, or from general
knowledge of the geology. It is more common though, that the a priori information
must take the form of some relationship among the unknown model parameters. A good
choice is a smoothness condition (Claerbout, 1976). This condition says that unless the
data show otherwise, a model parameter should take the same value as that of the layers

above and below.

The a priori information is easily incorporated into the objective function through

an additional penalty term. That is, replace Q (m), by

Q' (m) = Q(m)-p6Q,(m), (2.16)

where @, is large when the a priori condition is not satisfied. /3 in equation (2.16) deter-
mines the overall strength of the penalty. This means of the incorporation of a priori
information is well known in inverse problems (Menke, 1984). This thesis uses a smooth-

ness condition, based on the square of the derivative with depth of the model.

With this choice, equation (2.16) looks very much like a classical, damped-least
squares objective function; the difference is in the first term, which contains the interac-
tion with the data. That is,

Q' (m) — E S (w; (m), 7;) ~ B8 (m — ta)T Try (-1, 2, -1) (m - rh) (2.17)

Here, Tri (-1, 2, -1) is a tridiagonal matrix with the element 2 on the diagonal, and -1 on
the off-diagonals. 1h is the a priori model, and usually also acts as the starting guess for
the algorithm. The new term in equation (2.17) makes the algorithm pay a penalty for
models that differ from the starting model in the way they vary with depth.

The additional term also modifies the calculation of the gradient. This modification

is straightforward:

Vm@' = Vw@ - B Tri(-1,2,-1) (m - ) . (2.18)

Thus, the modified velocity-analysis algorithm looks almost like the original algorithm,

with one term added on to the gradient of equation (2.11).

Smoothing

The basic algorithm is further enhanced if the early iterations work on a version of
the semblance panel that is smoothed over stacking slowness. This smoothing allows the
algorithm to initially sense peaks that are distant from the starting values of stacking
slowness. Then, after the solution has initially found some peaks, the smoothing can be

removed. Thus, the results of the early iterations will be similar to the results of a
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pick-based process: large peaks of semblance influence the objective function for a large
range of stacking-slowness values. The difference arises when the smoothing is removed,

and the peaks’ range of influence goes back to the original values.

2.7 FURTHER EXAMPLES

The enhancements of the last section lead to a velocity analysis algorithm that con-
verges rapidly and is stable. The enhanced algorithm is first applied to the Gulf Coast
dataset used in Figures 2.8 and 2.11. This example illustrates the relative unimportance
of the starting guess for good data. Furthermore, the example shows how the smooth-
ness condition on the model keeps the solution away from a peak that would otherwise

lead to unreasonable interval slownesses.

Figure 2.12a shows the semblance panel along with the initial stacking-slowness
curve. This example starts with an interval-slowness model that is constant with depth;
this model produces a stacking-slowness curve that is also constant with depth. Because
this starting curve is so far from any peaks, a long smoother over stacking slowness is
appropriate for the first few iterations. Thus, Figure 2.12b shows the smoothed sem-
blance panel, overlaid with the stacking-slowness curves for the first 5 iterations.
Clearly, the algorithm has had no trouble moving to the peaks of the smoothed sem-

blance panel.

Next, the model corresponding to the final iteration for the smoothed semblance
values is used as a starting model back on the unsmoothed semblance panel. In practice
the algorithm just keeps around a copy of the original smoothness panel, and switches
back over to that panel after the smoothed iterations are finished. Because this starting
model is so different from the constant-with-depth model that started the entire process,
the derivative matrix must be recalculated. Figure 2.13 shows the stacking slownesses
and interval slownesses for all 20 iterations. Note that the stacking slowness have com-
pletely avoided the small secondary peak at 2.6 seconds. This peak is due to a fault-
plane reflection. (Hale, 1984); it stands out from the other peaks because of the dip-
induced cosine correction on the velocity. Because the smoothness condition does not
allow the interval slowness to make the drastic, sudden change that would have been
required for the stacking slownesses to go through this peak, the solution has been kept

along the main ridge of peaks.

The next dataset, from the Grand Banks of offshore Newfoundland, is more
demanding than the first one. This example was used to introduce the basic ideas of
this velocity-analysis algorithm (see Figure 2.4); the shallow times are thoroughly dom-

inated by a series of water-bottom multiples. Figure 2.14a shows the semblance panel,
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FIG. 2.12. a) Contour plot of semblance values with initial stacking slowness curve that
is constant with depth. b) Contour plot of smoothed semblance values, with stacking

slowness curves from the first 5 iterations. The initial stacking slowness curve is the line
with constant slowness with depth.
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FIG. 2.13. a) The stacking slowness curves for 20 successive iterations, overlaid on a
contour plot of the (unsmoothed) semblance values. b) The interval slowness models for
the 20 iterations; the vertical line is the starting model.
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FIG. 2.14. a) Contour plot of semblance values with initial stacking-slowness curve.
Note the strong multiples from 0-2 seconds. b) Initial interval-slowness model. This
model has velocities that increase linearly with time, from water velocity to three times
water velocity.
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FIG. 2.15. a) Contour plot of semblance values with the initial stacking-slowness curve
(the curve at the lowest values of slowness), and the final stacking slowness curves for
varying strength of constraints. b) Initial interval slowness model, and final models for
varying strength of constraints.
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along with the initial stacking-slowness curve. Figure 2.14b shows the initial interval-
slowness model. This model has the velocity of water until the first reflector (.4
seconds), then has velocities that. increase linearly with time, from water velocity to

three times water velocity.

Because of the strong multiples, the a priori information on the model plays a very
important role for this example. This role is shown in figure 2.15a, which shows only the
final stacking-slowness curves derived with different strengths of the smoothness condi-
tion. Figure 2.15b shows the analogous interval slowness models. The case without any
smoothness condition has simply found a peak for every zero-offset time; this includes, of
course, the multiples and the pegleg reflection around 2.6 seconds. It is also responsible

for the wildly fluctuating interval slowness curve of figure 2.15b.

As the strength of the smoothness weight increases, the interval-slowness models
naturally become smoother. Furthermore, the stacking-slowness curves pull away from
the multiples. The semblance panel does have two strong primary reflections at fairly
late times, at 2.2 and 3. seconds. At these times, the influence of the smoothness condi-
tion will thus be small; indeed it is at these times that the smooth models of figure 2.15b
are farthest from the a-priori values. The choice of starting guess, and the weight given
the smoothness condition played important roles in this example. Because the one-
dimensional algorithm of this chapter is so fast, the best choice of these parameters can

be determined by experimentation.

2.8 CONCLUSIONS

This chapter has described the basic principles of the automatic velocity-analysis
method of this thesis. The fundamental premise is that stacking slownesses are always
considered from the point of view of interval slownesses. This allows the algorithm to
directly incorporate a priori information; use of this information can be quite effective, as

was shown by the last example.

This chapter dealt with the velocity-analysis algorithm in its simplest form: for one
CMP gather, under the assumption that the Dix formula is valid. Because velocity
analysis is often performed in precisely this form, the algorithm developed for this simple
case should be useful in its own right. Furthermore, as shall be shown in the next
chapter, the basic principles of the. algorithm are valid for the more general case, that is,

when velocities vary laterally.



