Chapter 1

Introduction and Overview

The determination of interval velocities is a primary goal of seismic data processing.
These interval velocities are conventionally derived from picked stacking velocities. The
velocity-analysis algorithm proposed in this thesis is also based on stacking velocities;
however, this new method does not require that stacking velocities be picked. To elim-
inate the conventional picking stage, the method always considers stacking velocities
from the point of view of an interval-velocity model. This view leads to a model-driven,

automatic velocity-analysis algorithm.

The connection between the interval-velocity model and the stacking velocities
plays an important role in the algorithm proposed in this thesis. This connection can
take different forms, depending on the model assumptions that one is willing to make.
The first part of this thesis makes some restrictive assumptions about the model: that it
consists of flat layers, with laterally invariant velocities. When these assumptions are
made, a simple, one-dimensional form of the velocity-analysis algorithm can be used.
The latter part of the thesis extends the algorithm to two dimensions; in the process, the
assumption of laterally-invariant velocities is removed. Thus, the resulting algorithm is

both automatic and valid for laterally variable velocities.

1.1 STRUCTURE OF CONVENTIONAL METHOD

The velocity-analysis method proposed in this thesis is based on the use of stacking
velocities; the way they are used is quite different from the way they are used in the con-
ventional method. These differences can best be understood through a careful examina-

tion of the basic structure of the conventional velocity-analysis method.
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The conventional method is a three step process. The first of these steps takes the
data in each common midpoint (CMP) gather and tests for alignments along curves that
are hyperbolic in offset (2 ) and time (¢). Each hyperbola is parameterized by a stacking
velocity v, and a zero-offset time 7, according to the well-known normal-moveout (NMO)

equation:

12 — 2+ 2 (1.1)

Each hyperbola, corresponding to a particular choice of v, and 7, defines a summation

trajectory over offset. The greater the power in the sum, the better the alignment along

that hyperbola.

In practice, a normalized version of the power, the semblance S is used (Taner and
Koehler, 1969). For the midpoint gather at midpoint y, the semblance S, corresponding
to the hyperbola described by v, and 7, is '
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Thus, by sweeping through a range of zero-offset times and stacking velocities, the first
step of the conventional method transforms the data in each CMP gather, D (z, ¢, y) to
semblance, S(v,, 7, y). Figure 1.1a shows the data in a midpoint gather; Figure 1.1b

shows the corresponding semblance values.

The second step of the conventional velocity-analysis method takes the semblance
panel of Figure 1.1b, and locates or “picks” the peaks. One peak must be picked for
each zero-offset time of interest; the location of that peak is considered to be the stack-
ing velocity for that particular time. This second step involves some interpretation: if
more than one peak exists at a zero-offset time of interest, which peak should be picked?
The answer provided by the conventional method is that the peaks must be picked

manually.

The third and final step of the conventional velocity-analysis method takes the
stacking velocities picked in step two, and calculates a corresponding interval-velocity
model. This calculation depends on a key assumption: stacking velocities (v, ) are equal
to root-mean-square velocities (v,,, ). When this assumption is made, the interval velo-

cities v;, can be easily calculated with the Dix formula (Dix, 1955). The Dix formula
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FIG. 1.1. The first step of velocity analysis takes the data in a midpoint gather (Figure
1.1a) and transforms them to semblance (Figure 1.1b). For one midpoint, the coordi-
nates of the input data are (offset z, time ¢). The coordinates of the output data are
(stacking velocity v, , zero-offset time 7). These data are from the Grand Banks of
offshore Newfoundland.

calculates the interval velocity in the j*® layer from the stacking velocities at zero-offset

times 7; . and 7; as

(vin2)j - THI(USQ]T?H_—T.TJ‘[%z]j : (1.3)
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The conventional velocity-analysis method is thus a three-step process. Because the

velocity-analysis method proposed in this thesis is based on stacking velocities, this

method uses the same first step as the conventional method. The second and third steps

are, however, combined into one step and the manual picking of peaks is thereby elim-

inated. Furthermore, instead of using the Dix formula to connect interval velocities and

stacking velocities, this thesis uses an alternative formula, which is valid for laterally



varying velocities.
1.2 PROBLEMS WITH THE CONVENTIONAL METHOD AND SOLUTIONS

Problems with picking

Suppose for the moment that the assumption underlying the use of the Dix formula
is valid, that v, = v,,,. A basic problem with the conventional method remains: the
method requires that an interpretive step (the peak picking of step 2) be performed with
no reference to an earth model. The earth model enters later, in the third step, when
the interval velocities are calculated. At that point, it might turn out that the picked
stacking velocities lead to a physically unfeasible set of interval velocities; for example,

negative interval velocities might be required.

An experienced data processor knows that certain peaks should be avoided because
they would lead to ridiculous interval velocities. Indeed, other automatic-velocity
analysis methods use some form of pick validation, to first decide if the picks are reason-
able (Hubral and Krey, 1980). Thus, a good job of peak-picking implicitly incorporates
an interval-velocity model. This thesis goes one step further: it explicitly incorporates an

interval-velocity model in the evaluation of stacking velocities.

Thus, throughout this thesis, stacking velocities are always interpreted from the
point of view of the interval-velocity model, that is as v, (v;, ). As in the conventional
method the goal of the velocity analysis is to find the peaks in the semblance panel. The
difference is that the method of this thesis finds these peaks by changing the interval

velocity model; that is, the velocity analysis is model driven.

This model-driven velocity analysis has the advantage over the conventional
method that the physical constraints can now be applied directly where they belong: to
the interval velocity model. Thus, only feasible models are examined. The result is an

automatic velocity-analysis method that is directly subject to physical constraints.

Chapter 2 of this thesis develops this automatic velocity-analysis method for the
simplest possible case: for one CMP gather, under the assumption that the Dix formula
is valid. The simplicity of this case allows a clear exposition of the velocity-analysis
algorithm. The algorithm is applied to several sets of field data. Because velocity
analysis is often performed on single CMP gathers, under the assumption that the Dix
formula is valid, the algorithm developed for this simple case should be useful in its own
right. Furthermore, the principles of the algorithm are also valid for the more general

case, that is, one in which velocities vary laterally.



Problems due to v, v

rms

By eliminating the need for stacking velocities to be picked, the algorithm proposed
in Chapter 2 of this thesis solves one problem of the conventional method. But a second
problem is faced by any method based on stacking velocities. The assumption that
stacking velocity, v, , equals rms velocity, v, , is simply not valid for laterally varying
velocities, nor is it valid for depth-varying velocities when the depth variation is strong
and wide offsets are used (Hubral and Krey, 1980). Thus, two alternatives are possible:
either interpret stacking velocity as something other than rms velocity, or use some

measurement other than stacking velocity.

The most common alternative is the latter: stacking velocities are abandoned
entirely, in favor of traveltimes. Thus, the three steps of the conventional method are
replaced by an analogous set based on traveltimes: first, alignment is measured by the
cross-correlation of traces; second, peaks of the cross-correlation functions are picked,
and then identified as traveltime differences; third, an interval-velocity model that fits

the picked traveltimes is built.

Although this type of traveltime method can be quite successful, it can also
encounter serious problems when the data are noisy (Donaho, 1979). For those data, the
picking required in the second step is even more difficult for traveltimes than it would be
for stacking velocities. Thus, because the traveltime method is also based on picked
peaks, it faces many of the same problems as those of the conventional stacking-velocity
method: which peak is the right one to pick, and how can the influence of incorrectly
picked peaks be diminished? Ronen and Claerbout (1985) and Rothman (1985) have
successfully dealt with these problems in their work with the simplified traveltime
method of residual statics. Although the velocity-analysis algorithm of this thesis is
based on stacking velocity and not traveltime, it has the same underlying philosophy as
do these two traveltime (residual statics) methods: rather than building a model from
data consisting of picked peaks, velocity analysis should build the model from the origi-

nal data.

A velocity-analysis method based on stacking velocities does have several advan-
tages over one based on traveltimes. Stacking velocities, unlike traveltimes, are rou-
tinely determined in conventional seismic-data processing. When the data are noisy,
stacking velocities are also determined more reliably than are traveltimes. Finally,
because the computation of stacking velocity removes the offset dimension from the
data, the number of stacking-velocity measurements is smaller than the number of trav-
eltime measurements by a factor equal to the number of offsets. Thus, a velocity

analysis method based on stacking velocities is computationally more efficient than one



based on traveltimes.

As long as the velocity-analysis algorithm is based on the interpretation of stacking
velocity as rms velocity, the interval-velocity model constructed from strongly varying
stacking velocities will be incorrect. An advantage of speed or relative insensitivity to
noise will not compensate for this basic incorrectness of the model. On the other hand,
this thesis shows that an algorithm based on the correct interpretation of stacking velo-
city can build a very reasonable interval-velocity model from strongly varying stacking

velocities.

The key to this correct interpretation of stacking velocities is the observation that
for a particular reflector and midpoint, the stacking velocity at which a peak of sem-
blance occurs depends on the traveltimes to the reflector. This dependency arises from
the fact that, as previously stated, the stacking velocity is a parameter describing a
hyperbolic summation trajectory. The traveltimes determine what value of this parame-
ter corresponds to thé largest semblance. Thus, the relationship between stacking velo-

city and interval velocity, v, (v;, ), is more properly written as v, [ (v;, ).

A linearized version of the relationship v, [t (v;, )] was first proposed by Lynn
(1980), then more fully developed by Loinger (1983). In Rocca and Toldi (1983), we con-
tinued the development of this linear theory and showed how it could be used in an
inversion procedure. Chapter 4 of this thesis discusses this linear theory in detail. It
presents a detailed derivation that explicitly uses the fact that stacking velocities and
interval velocities are related through the intermediary of traveltimes. The earlier work
did not allow for the general geometries (a dipping reflector, and a depth-variable back-

ground) that this derivation takes into account.

1.3 TWO-DIMENSIONAL VELOCITY ANALYSIS WITHOUT PICKING

With the help of this linear theory, Chapter 3 extends the application of the
automatic velocity-analysis algorithm of Chapter 2, to media with laterally varying velo-
cities. The extended algorithm is structurally identical to the simple, one-dimensional
algorithm that is proposed in Chapter 2. However, one important detail of the two algo-
rithms is different. Whereas the one-dimensional algorithm independently considers each
common-midpoint gather, the extension of Chapter 3 requires that all midpoints be
simultaneously considered. This difference arises because of the laterally variable veloci-
ties: if the interval velocity model is changed at one midpoint, the linear theory requires

that the stacking velocities from all surrounding midpoints be changed.
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The second half of Chapter 3 applies the two-dimensional algorithm to a field-data
example that has flat reflectors and strong lateral variation of the stacking velocities.
The algorithm constructs an interval velocity model, which explains this lateral variation
with a shallow, low-velocity anomaly. Not only does this anomaly explain the laterally
varying stacking velocities: it also explains the laterally varying traveltimes. Thus, the
automatic velocity-analysis algorithm proposed in Chapter 3 is valid for laterally vari-

able velocities.

The strength of this velocity-analysis algorithm is that it is based on stacking
velocity—a measurement that is routinely and reliably made. This algorithm overcomes
the main weakness with stacking velocities—that moveouts might not be hyperbolic—by
treating laterally varying stacking velocities as parameters that depend on the travel-
times. Because the algorithm requires no picking, it is able to avoid the problems with

efforts to fit spurious peaks.



