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ABSTRACT

The conventional method of velocity analysis in reflection seismology is a three-step
process. First, stacking velocities are measured by means of a series of sums through the
data along trajectories that are hyperbolic in offset and time. Then, for each time, the
stacking velocity corresponding to the peak value of the sum is selected. Finally, from
these picked stacking velocities an interval, or true earth-velocity model is constructed.
There is a basic problem with this conventional method: it requires that an interpretive
step (the peak-picking of step 2) be performed without reference to an earth model.
Thus a physically unfeasible set of stacking velocities may be picked. The earth model

only enters later, in the third step, when the interval velocities are calculated.

The velocity-analysis method proposed in this thesis eliminates the peak-picking
stage of the conventional method. This stage can be eliminated when the stacking velo-
cities are considered from the point of view of an interval velocity model. Thus, a search
for the interval-velocity model that best explains the measured stacking velocities consti-
tutes an automatic velocity analysis algorithm that is directly subject to physical con-

straints.

The first part of this thesis develops the algorithm for use on a simple, one-

dimensional case. Presenting this case allows the clear exposition of the basic issues of
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the velocity analysis algorithm: the means by which the interval-velocity model is
evaluated and the best model found. The second part of this thesis extends the
automatic velocity-analysis algorithm to two dimensions. The extension requires that
interval and stacking velocities be connected in a way that is valid for laterally variable
media. This connection is made by use of a linear theory; a full development is con-

tained in the final chapter of the thesis.
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