Sampling theory for velocity space dip-moveout and migration
Paul Fowler

INTRODUCTION

In a previous paper, I discussed how to implement dip-moveout and migration on
constant velocity stacks, so as to image data prior to velocity analysis (Fowler, 1984).
The economics of implementing this algorithm depend directly on the number of con-
stant velocity stacks which must be created and processed. In this paper I will discuss

attempts to obtain estimates of the number of stacks required.

SAMPLING STRATEGY FOR CONSTANT VELOCITY STACKS

For a specified zero-offset time 7 and a range of velocities v, normal moveout
defines a suite of hyperbolic summation trajectories in offset-time space (h ,¢ ). Figure
la shows such a set of curves, in this case for a zero-offset time of 0.4 second and an
offset range up to 3 km. The velocities illustrated range from 1.5 km/s up to 6 km/s in
increments of 0.5 km/s. As can be seen, the curves bunch together for higher velocities,
unevenly sampling the time axis for a given offset. Since velocity discrimination is much
poorer for high velocities than for low, we wish to sample low velocities at a denser rate
than we need for high velocities. We also want to be able to stack in steeply dipping
events, so we need to cover a velocity range which extends effectively up to an infinite
velocity. For this latter reason, we will henceforth consider only sampling in terms of

functions of inverse velocity, or slowness.

To determine an adequate slowness sampling, we need to relate the slowness sam-
pling rate to the time axis sampling rate. What function of slowness would give us a
family of moveout curves which sampled the time axis at a specified offset evenly?
Unfortunately, there is no simple answer to this question, since any velocity (or slowness)

function that samples time evenly at one offset and one zero-offset time would not do so
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FIG. 1. Sampling a given range of moveout velocities with different sampling schemes.
All examples cover a range from 1.5 km/s to 6 km/s. (a) Equal velocity intervals
(b) Equal slowness intervals (c) Equal slowness squared intervals

for others. We can write moveout at a slowness s as:
t —= (72 + s2h2)’/” (1)

where h 1s offset, 7 is zero-offset time, and ¢ is time. Offset here is full offset, and all
times are two-way travel times. If we consider two moveout curves with the same zero-

offset time 7 but different slownesses s; and s,, we have
At — t2—t 1 (2)

= (P +sFfhY) - (2 + s 2R DV

Then
ty -t =h?(sd —si) (3)
h2 2 .2
At Bsz80) (4)
2t
2

~ —hTs—As (5)
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These equations can be interpreted to suggest two different sampling schemes: evenly in

slowness w or in slowness squared o=w?. First, if hs <<r then ¢t ~7, and equation 4
becomes
h2
At = —Ao (6)
27

So for small offsets, large velocities, or late times, sampling evenly in o will approxi-
mately evenly sample the time axis for a given 7 and h. If, instead, we have hs >>r1,

then ¢t =hs and equation 5 becomes
At =~ h As (7)

So for early times, large offsets, or low velocities, the time axis sampling rate is approxi-
mately proportional to the slowness sampling rate. These two different approximations
may be interpreted as approximating the moveout hyperbolas in the slowness squared
case by parabolas at the inner offsets where curvature is large, and in the slowness case

by the straight lines which form their asymptotes.

For an example comparing sampling in increments of velocity, slowness, and slow-
ness squared, see Figure 1. In this particular example, even sampling in slowness can be
seen to sample the time axis very evenly at wide offsets. However, as we shall see, slow-
ness squared sampling makes DMO particularly simple, and may require fewer stacks in
typical cases. We will find approximate bounds on sampling rates for both schemes.
Note that

Ao =~ 2s As (8)

so it is generally easy to go from a sampling estimate for one scheme to one for the

other.

For those more used to sampling in velocity, or in even increments of Av /v, we

can approximate slowness squared sampling as:

1 1
Ao = — - —
vy Vo
20 —'1)12
'U12'U22

Av(2v,+Av)
(vi+Av)Po

2Av
~ = (9)

v
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Similarly for even slowness sampling,

As =L L
V1 Vg
. Av
~— (10)
v

So sampling in slowness is approximately equivalent to increasing the velocity sampling
rate proportional to the square of velocity, and slowness squared is equivalent to increas-

ing velocity sampling proportional to the cube of velocity.

SAMPLING FOR DIP-MOVEOUT

Dip moveout can be implemented by dip decomposing constant velocity stacks by
double Fourier transforming each stack, and then shifting events along the velocity axis

according to:

(11)

2 2 —~1/8
_ Ustack ky
U == Ugtack 1+T

where vy, is the stacking velocity, and v is the DMO corrected, or zero-dip, velocity.
(Fowler, 1984) Because DMO expressed this way only shifts data along the velocity axis,
if we have sampled velocity adequately in stacking, DMO should require no higher sam-
pling rate. Note that in terms of slowness squared 0 the DMO equation 11 becomes
k 2
O = Oggck + ZZT (12)
The DMO correction thus becomes a pure shift along the o axis, with no stretching or

shrinking, in which form it is particularly easy to implement.

ESTIMATING SAMPLING DENSITY

We now turn to the question of how small an increment of s or ¢ must be used.
Our basic goals are to be able to estimate the moveout velocity of hyperbolas as well as
possible, and to have all significant events in the data appear identifiably on at least one
stack. The two goals are, of course, intertwined. We can characterize the difference
between two hyperbolas with the same zero-offset time 7 but different moveouts by the
time difference between them at a given offset. We wish, therefore, to ascertain how
small As or Ao must be to keep the corresponding At below a given size. We will look
at Ao first.
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From equation 6 we can see that At will be largest at small ¢ and large h. We

can rewrite equation 6 as

Ot . h?

For a specified ¢, if we want to ensure that At <¢, we therefore need to ensure that

Ao < %e. Hence we need to put a lower bound on the size of —:—g— This quantity will

have a lower bound, even though ¢ can approach 0, since A will also go to zero in such
an event. For any non-zero offset h, the data are zero before some minimum time, so
there is alway a minimum value for ¢ /h. In practice, a mute is usually applied to data
with ¢ /h less than some specified value to mute out direct arrivals and head waves. We

will call this mute cutoff value s,,,;, - We now have the bound:

2s
= > (14)
If we let A, represent the largest offset in our survey, we then get the bound
2s
max
We thus require
2s
Ao S hmute (16)
max

as an estimated bound on how finely we must sample o to ensure that neighboring
moveout hyperbolas intercept the furthest offset at time spacing no greater than a

specified amount e.

We have used s, to indicate the direct arrival mute. The effective mute applied
is often more extensive than this, since it is common to mute out events for which NMO
stretch becomes excessive. The amount of NMO stretch will be given by Ar/At. We
will approximate this by the derivative

Ar __ 97 [ 2 2]"/” t

— = = | t—0oh =— 17

At ot T (17)
So if we require that ¢ /r<<k for some constant k >1, we find that the data not muted

must satisfy

2 2
t_> k<o
h? T k%

(18)

Then, as for the direct arrival mute, we get
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2¢ k% e
Ao < (19)
h max k 2_1

This stretch mute, because it depends on o, will only be significant for large o, as we

might expect.

Looking now at a bound for As, we begin with

at h2s
At = —As = —A
s s ; ) (20)

Using reasoning similar to that above, we find that if we use the bound

As < —£ 21
s < o (21)

max

then

IA
»

<e

Because we are using a wide offset approximation for which constant As produces con-
stant At, we do not need to consider the actual values of the direct wave or stretch

mutes in this case.

SAMPLING FOR POST-STACK MIGRATION

The last factor we need to consider is the movement of events during migration.
Successive DMO corrected stacks will be migrated at the corresponding velocities, and
we want to be sure that energy does not move too far in either the lateral direction z or
in time-depth 7. We need to express the movement of energy Az and A7 as a function

of the sampling interval As or Ao.

The desired relations may be derived either by a simple ray picture in the time-
space domain, or by a stationary phase calculation based on the wave equation in the

frequency-wavenumber domain. We will use the first approach here, and describe the
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second in the appendix. Suppose in our stacked data we have a small segment at (zo,t)
with dip gdt— which we wish to migrate at the earth velocity v. We can “hand migrate”
x

using the picture in figure 2 as a guide.

FIG. 2. Geometry of zero-offset migration in a constant velocity medium. A point at
(z,2) on a bed with dip 0 appears on a zero-offset survey at (zg,t,). Migration will
reverse this process.

The apparent dip on the section Tj_t will be related to the real earth dip 6 by
T

sinp — 2.4 (22)

The migrated depth z of the event will be

z = -;—tcosﬁ (23)

or, converted to time-depth =2z /v,
T = t cosf (24)

The lateral position z of the migrated event will be given by

T = xo—i-gt sind (25)
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If instead we had migrated with a different velocity v’ we would have

!
(2= [tcosB’, z—b—%—tsinﬁ’] (26)
where
!
sinf/ = 22—%;— (27)

The difference between the positions of the event on the two migrated sections would

then be given by

(Ar,Az) = [t (cosf—cost'), Et-(v sinf-v 'sind') ] (28)
Substituting
!
sind’ = 2~ sinf (29)
v
we get

] 1/2
Ar=t |:cose—[l—(%)—)2 sin29] ] (30)

Ar = —"2—t sinf [1—(”—”')2] (31)

These relations may be written in terms of o and o' or s and s' and solved after exten-
sive algebra for Ac or As in terms of A7 and Az, but the exact expressions are too
complicated to be of much use in obtaining bounds. For our purposes, it is adequate to

drop all higher order terms in Ao or As and use linearized approximations.

Working from either equations 24 and 25, or 30 and 31, we get for Ao

AT~ ﬁ Ao — — t sinftané Ao (32)
do 20
. Ox __ tsind

Ar =~ 79-0-— Ao = —W Ao (33)

From these, we can get the estimated bounds

20,
Ag < ——— (34)
t max SinOtand
90.3/2
Ao < —2min_ Ay (35)
t max SN0

where A7 and Az are the largest intervals in 7 and z one can allow compatible with the
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temporal and spatial spectra of the data.
Similarly, for As we have

or _ tsinftand

ATRe —— As = A
TR o= Qs . s (36)
oz t sinf
Axr ~ — = -
T 3 As ) As (37)

From these, we can get the estimated bounds

s .
As < —— A 38
5= t max SINOtand ’ (38)
s 2
As < — " —Ax (39)
¢ max SinG

There will be no minimum o or s for stacking, but after DMO there will be a
minimum over which we need to migrate accurately. Note that z movement is nicely
bounded at steep dips, but no o sampling can be fine enough to contain movement of

energy in 7 at near vertical dips.

EXAMPLES AND DISCUSSION

Previously I demonstrated the velocity space DMO and migration algorithm using
as an example a portion of a data set from the U.S. Gulf Coast (Fowler, 1984). The
image was extracted from a series of stacks using a constant velocity sampling interval
of 0.03 km/s to cover a range from 1.5 to 2.7 km/s. Let us apply our estimated bounds
and see how many stacks we would calculate are needed to properly handle this data set.
The relevant parameters are: maximum offset h ,, is 3.55 km, maximum time used here
1s 3 seconds, maximum slowness used is water slowness 0.67 s/km, which is also the
mute slowness, and the NMO stretch mute constant k¥ is 2. The data is sampled at 4
msec, and midpoint spacing is 33.5 m. If we set the maximum allowable time shift At
to the sampling interval, then data below 62 Hz will be shifted less than a quarter
wavelength and will effectively still add in phase. These data contain little useful infor-
mation with frequency content that high. Applying the inequality estimate 16 with
€¢=0.004 we find that we need Ac<0.0015. If we were to cover the slowness range from
0.0 to 0.67 using slowness squared sampling this implies that we need 296 stacks. We can
improve on this a little by allowing for the effects of the NMO stretch muting. Using
0=0.44 and k =2 in the inequality 19, we get the estimate Ac<<0.00174, which reduces
the number of stacks to 256. If we now apply this last sampling rate in the bounds given

by 34 and 35 with minimum migration 6=0.189, which corresponds to a velocity of 2.3
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km/s, we find that Az is less than the midpoint spacing for all dips, but A7 is held
under the limit 0.004 only for dips up to about 30 degrees.

Considering sampling evenly in slowness s instead of its square ¢, we can apply
relation 21 to get the estimate As <0.00113 which implies we should use about 596
stacks. Looking at the migration estimates, equations 38 and 39, we find that this sam-
pling rate is no problem for Az, but limits dips to about 39 degrees. The higher

number of stacks implied suggests that we are better off using ¢ sampling.

The actual sampling used in that paper was Av =0.03 km/s, which corresponds to
a range of Ao from 0.0031 to 0.0173. This is up to an order of magnitude larger than
what we estimate as acceptable. The results shown in the aforementioned paper, how-
ever, appear quite acceptable, and make us suspect that our estimates are much too
harsh. In particular, the extracted stack was compared with a conventional variable
velocity NMO and stack, with only very minor differences visible, so the sampling rate
could not have been too unreasonable. A larger portion of the same data set is shown in
Fig 3. It was extracted from a suite of 88 stacks after DMO and migration. The sam-
pling was at an even rate of Ao=0.005, about 3 times larger than the Ao size calculated
above. The steeply dipping fault plane reflections are handled well, and the image on
the whole is fairly good. The obvious loss of signal at early times is not a sampling
problem; it occurred because no normalization was applied at early time to the stacks to

account for the fewer number of traces being summed.

Our estimates are of course worst case upper bounds; we have not shown that using
a coarser sampling rate will introduce unacceptable errors. In fact, there is good reason
to believe that these estimates are too harsh by a large margin; this author’s experience
has been that for several data sets, somewhere between 50 and 150 stacks has usually
appeared to be adequate. A more careful look reveals one place we have overestimated:
our criterion for stacking rate may be much too limiting. When shifts larger than At
are allowed, the errors are not usually major, and can be corrected by proper interpola-
tion. Even with a large shift at the outermost offset, the principal effect is a decrease in

amplitude in the stacked event.

As a test I generated a synthetic model comprising an event with velocity 4 km /s,
zero-offset time of 0.47 seconds, and a maximum offset of 4.7 km. The wavelet used was
a 10 to 60 Hz Butterworth bandpass filter response. Applying our stacking estimates
suggests that we need a sampling rate of Ac<0.00042. The data of figure 4 represent
200 o samples at this sampling rate; the plot shows the stack amplitude at the zero-
offset time 0.47 seconds against the o used for stacking. Obviously, our estimates not

withstanding, we have grossly oversampled in o. Figure 5 shows the same data

SEP-42
340



Sampling velocity space

Fouwler

[

vv—

s

m § mvmwaﬁm&;ﬁ:ww R pwg\_\ w
W .,s s wvv .mmvv..."w wwwv w _w WW
i

TSN : s

e

L S e Vmwvw i ,fwzwﬁw (o %,,,‘. \N s@%,.,.,wv,vmv.vmuwﬂmwWw,w NN& s ,y.w.,‘.,%a... ol
o S % 2 o { ST 7

) swwww wvvw_wv E wm i ‘m; vn./w:,f///ﬁ %ﬁv&uw@gﬂm N wlpﬂw, v'.ww,m%mmm%wwvwmwwvvwf«”rw%wv/wﬁ,frrwwwW.ﬁWMWw%WMMMWMWNQWWEv wvv...e Wl M Mwwwwwwwﬂwwwvv i w,vvwv«uwww mﬁw‘wwu«bv«v»@\vy S

it < x DS G
SN 3 KN . NG S w
e .._.,”r,,,g, ?,,V,, e ,_,.,,,,,.N %",, ) wwvag i

T
5% ..
G, %!
,«v PN $ 4,.4/.4;.:. oY 4 ,‘Nm.. 4, W .,,J.m_: NS vm%w
s
KON
Y

W ;

A

w

d s ) ]
i S v@» = wvvv Qwvv&vévvvv\ws .Sw%@.
L el e (e S S mm. R

o ,. f BB :vv a.,. .vé e 24« \x?i RIS, i e~ B, i xzé S «rvvazvvvvx»vxvv\.»\vvvvg..\.\%\\
X Mwww‘mmﬁmv s @ mx L N%_“ b n,,,NV /év,.wn. 2 mvmmfﬁ% ”wm"w%,r, ﬂ%\ Wwﬂww.éwwa .Juw,%u %ﬂa&%éﬁﬂﬂw wwwww&. :Wmm zw,,,mwmmv %NMWAWW.V%Z@@W?@MW
] SO e s o s « ML > poreestel( s s A 2
WWE%ﬁm%é%wgqgﬁwwéﬁaw.%ﬁ@ﬁ¢%@é%&ﬂ%%ﬁ@%ﬁ%&&@@@é&&&gﬁkﬁ%ﬁmﬁ%ﬂﬁ%ﬁﬁﬁﬂ&
ot » 2 W ﬁuw.vwﬁvvu b (»!w SR 2 /%J.J.Jdl..u Jd/-#dal? e R e b I PIIIINR R IS 43 {{ vvvvvvvwvvwﬁ «vwvﬁwwxa—w.\»w
i WW%:@;;WN m,,m,.,%_w_ mmy,”,.,u,,m T N,%f.m,,,ww,www%wvaw L W%%,%@. L &V@v_‘h “‘V%Wwwwwy wwm,,,...wwm%@ i
_wmw_ Maa %ﬁ&@@w5_5.4,..._@E,wwwvv_ mg% vwmﬁﬁ ,\,.,v.,f/,,,,w/, .v.z%mwwv ,NN yvmw,.waw..m?m%mﬁ.\.,mwwwiﬁfwf wuwwww.wwm%wwwﬂ%mmﬂ nv»,w_% vwéz;.,vvvﬁw; wﬁ.,.,,aw,.,ww&wm
DRSS PG f m_a O eedase e U e i X e
e e e
ﬁw va#J/ N.ﬂr? . %«/v@v; vwvv.«...rt..é sl z,. w g@@? w o0 e vvv;v A \VMV«.J,VVJV.VW#\WJ.‘...\.:‘ I o fu‘vw vaés? \ 4 S
et w,,,mm,% o HmeseS W?§ g e
v'“«v . VV/VI g e ] ) 5" t. Vit *%g 11 I;
g - wﬁ/...,ww vl RS ««%w,,mﬂ"mwémvvv e S (e uv&wdewww\w@wﬁwww@@u@ yywvwwwl J NM “ & ,§ s i Ewu. .
R .ﬁ..%isssi I R awwwdwwwud%, s (A T - AR o]

,,,,s%cﬁ..ww AREGRAIY ﬁvﬁw,q ,wwww.w\vﬁ &Mmv,vv%s\\\wm..a.ww.gvvv%usssa@sussa.%ﬁia.%.m%ﬁmmm.wwﬁv R e U vénisaa a R \m\\wﬂmﬁwﬂg

SHE

ke

w

&

\/

T IR
“"“’

" 7
[0 edonen e v%vvvwvamvwww. ST DI e I ez e &EEEM& — Z§W.W wm.aw.. MWMMA
i % i R : A ...34
fww w SO A I W 3 O SRR R AR X ww S w {
,vrwvrﬁfy“rﬁvwww,w w MM he vﬁ e b i ! Jlees b RRIRRIRRA o0 v
N > vx Y)Y IRINNTO ORI IIRER
Mgt L vvvv_v..v,w S iSO o ,% EStu R DR TR m.,mwézvzzs
e ««««évgsvvvvvvvv««vvvvvvvVvvv«v;v«vvv\ww ST I
ardrds
M SERTHE ——— s P ETAT AR TR AR5
HRRES ?:aé/vw{..rrﬁ ﬁwﬁwxr i P e
e i -
&m “ w w&: NN? w. @ ,;51:!??vvé,,wwmNww 3 & www Nw N w mmwww
§
i %mm, %
R el W) 2RRLARIC q«

DA TSI D s aagg%y.%&@évv e w ot ‘Eswzw,. ,v évvivi
R e ) E§§§§v§¥v§§w§v§ (i o
D =v W e S
e P ) S AR IHSIIIMIISAS IS %
,,,,,,,,,,,,*nw,ww?g...v,,, e T e Vw,%%mm? ,,a.ﬁ.%%%%%%ﬁ%,ww?., e T
S S ) R i S
e /ﬁ,r&vv,wv{\v\: S R S T RO el ,,vvv
"wwwm, R mv,nw.,.,%WM?%@.AW@%EN@% v&ﬂ?ﬁyvé?ééa»«éa%é%.,?..,,.fvv..,/%f,vf.#/.#;.ff i i
) Nw«,rrff.&ﬁé?ﬁh@%ﬁ.ﬁ!&%@%%&u@é e e e e S
uw“@i % i wwvwn?Juv.,#!«vvvaw‘vﬂu.,&JJ %ﬂﬁﬂw«vvwwwwv v.‘“ﬁ“ﬂn—. - .V&W”nﬂ%%%#m?u%uﬂmv&hﬂﬂ”ﬂi-@ii i%&vs%%thv«vﬁﬂhP!!w.!e - mm ,vavvvwvvvvv‘!va
vwwv “?w i i I et e d T AR A Rue ;aaz;e % o
SRR
( f il
: W 2 MWN. ,,,:.2,3,% NN ww ,Z;? é? ,FFFFr.N
_z_w M m m"mw_
\\:::: ==== I I 7 R o '.
b eI zgz.
o L il

ALl L e T
e

(e iy o
ﬂwmiu@ww@ %r.ggw!v!zuvv ..!.s SRR w'%wr.w.w wﬁwwﬁ SR .:..i.:_:saﬁﬁ e \\Lw,w vv\:v%v
-+ core T LA AL DT ANATIAAANRAY
e e : i
«.i s s I ,/éwmp TR uwwvé,www%ei S wmﬁmﬁﬁ§§~§§§§%2&%%w%w%,wm TS
S Nl SRS O T aﬁﬁr_&m I Rt S e 1) ,w%%xgw_ s
it S R R ) S 2.%...%
ww ,,vv & —y Vvvvvv/vvv%.v:&vvv?vvvvv«vvv e usv\gtvvvvwﬁrl:!iiswv!v!!!.! - J«.v,./v./v,vvuvvvvvvv«/v«d.
i N_‘_ B o
LR e AR L _..E%_Eﬁ S _;~,~.~._g.z_._§_ p__z.~ﬁxﬁ.ﬁ..,ﬁﬁ.ﬁ.ﬁ.,ésﬁﬁwﬁ; SR “,.,..,vu.,.ww.wxuwﬁw
. e
: i £ ,,;??,2i,.év,éévy,étév vvvaxv%vwxxx,: o .w.www.
& ww M gﬁ_“ L w_;m_za_w% o . wﬁgmw_ﬁ_g%a .
.g%yvvv%s#?xv&vwwvw %.@m e i :.=. : :: (CRERUII il cesteeee SR SN

..--

0T 8 9 174 4 0

(i) 3utodpTw

o™
e

time (sec)
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undersampled by a factor of 8, without noticeable loss of definition of the peak. The

peak is down in amplitude, but can still be recovered readily by good interpolation.

)]

©

D

T ol

— QJ

Q

£

O

X

O

O

()]
O T T T T
0.02 0,04 0.06 0.08 0.1

slowness squared

FIG. 4. Amplitude against stacking o for a synthetic model event.

Clearly, these examples do not tell the whole story, but they do suggest that in
practice our proposed criteria for estimating the number of stacks needed may be too
strict. This paper must end, then, on a somewhat unsatisfactory note. We have derived
estimates of the number of stacks which we can be pretty sure will enable us to recon-
struct an image well. The answers these estimates provide seem significantly larger than
prior experience would suggest, large enough, in fact, to make the method economically
suspect. What we have not answered yet is whether we have been undersampling and
not recognizing the resultant errors, or whether we have overestimated the number of

stacks needed due either to overstrict criteria, or to mathematical error.
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FIG. 5. Amplitude against stacking o for a synthetic model event. This plot is the same
as figure 3, but the sampling rate for o is one eighth that used in the previous figure.
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APPENDIX

Post stack migration can be written as
p(z,t=0,2z)= fdwfdkz ¢ s 7 Fiks (Wk; )2 p (k; w,z =0) (A1)
Suppose we consider a spike at (z,tg) in our recorded data, so
p(x,t,z2=0)= §z-zqt—tg) (A2)

But

pky wz)= [dt [doe™ ™% §(z 2ot t, A3
z 0

e i(wtgk; z0)

So the migration equation A1l becomes

SEP-42
343



Fowler Sampling velocity space

p (13 = fdwfdk ik, (z -2 o) +ik, (w,k, )2 +iwt, (A5)

The principal contribution to this integral will come from the stationary phase path, and
we may regard this curve as describing (in a high frequency asymptotic sense) the loca-
tion of the emergy in (z,z) after migration (cf. Claerbout, 1985). We can write the
phase function as

\I/(w:kz ) = kz (.’II -z 0)+kz (wykx )z +Wt0 (Aﬁ)

Then we find the stationary phase curve by setting the derivatives of ¥ to zero.

v ok,
0= = +t - A7
Ow ? ow 0 (A7)

ok
0= (;91:71/ :zakz +z -z (A8)

z x

Now

1/2
[ —-k ] (A9)

where v is the migration velocity. Then

Ok, _ Tw (A10)
Ow vaz
ok, _ —k, (A11)
ok, k,
So we get a pair of equations for z and z
4z w
0=ty Al12
0 Uka ( )
k
0=2z-2¢ e (A13)
Z
Let
k
sind = 2 (Al4)
2w
k
cosd = (A15)
2w
tanf = —> (A16)

z

Then equations A12 and A13 for (z,z) can be parametrized by 0 as
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Fouwler Sampling velocity space

£ ocosf
g — LoV (A17)
2
t osind
r = 2t ";”‘ (A18)

These agree with the geometric results of equations 23 and 25 in the main text.
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Par File

Sl e

InFile | REQUIRED [ 0K ]
script File | NONE
Movie Title| INPUT FILE NAME
author  |LOGIN NAME| eed [ 7 | transp yes
ni REQUIRED n2 REQUIRED n3 ALL
at [ 1.0 d2 1.0 d3 1.0
ol L 00 | o2 | 00 | o3 [ 00
labell | X | labelz | Y | label3 | 2
zoom! | COMPUTED | 2com2 [ COMPUTED
color intensity mask 11111110 | gain 1.0
2N MIMIbie e —
VIEW _LOOP Z00M _ COLoR
@ front @® forward @grey Qgsi
( side O reverse ) O grey- O blue
) top O both ways () O flag O brown
 frontGside dual cli
= (forward )  GrrqucT U Clclip
) frontétop CUNTRAST
(D sidefrtop SCROLL
O plan view Ul
(O front cube SPEED B DDDEDDD
C side cube fast slow (O (R MASK
O top cube XOO000 4 KKXKRMHMNC]
MOVIE _FRAME_ o |
@ Front [QI(D@JD:I frame #|00ps
8 ;““‘ D@@Q first camera
v ®Oiedy last | | gpow | l
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