Velocity space imaging: formalism, methods, and prospects
Paul Fowler

INTRODUCTION

In previous papers I have discussed methods of imaging seismic reflection data after
transformation to a velocity parametrized space (Fowler, 1984a, 1984b). Related tech-
niques have also been suggested by others (Shurtleff, 1984; Gray, 1985; Chun and
Jacewitz, 1978; Tieman, 1984). The purpose of such methods is to draw more closely
together the steps of velocity analysis and reflector imaging. In this paper I want to dis-
cuss a formalism for understanding these efforts as approaches to approximate inversion.
I hope to contrast these velocity space methods with other inversion methods, and to
suggest ways in which to extend their range of applicability. The reader should be
forewarned that I will introduce a certain amount of formal notation, but that many
points deliberately will be left fuzzy in definition; the following is in not at all a rigorous
theory, but more a heuristic framework for understanding a perhaps unconventional

approach to extracting useful images from seismic data.

MODELS AND DATA

Seismic data as it is commonly collected is a function of midpoint z, offset h, and
time ¢ . I will restrict the discussion here to two dimensional line surveys; most of what
[ will say carries over to three dimensions readily (until one goes to implement it!) The
data may represent pressure, the vertical component of velocity, or some similar func-
tion; in any case we may consider the set of all possible data sets which could be
recorded by a fixed survey geometry recording over any possible subsurface geology as
some subset D of a space F(R?®) of functions defined on three real variables. If we were
mathematical pedants instead of geophysicists, we might want to limit our function

space by insisting on continuity or some such restriction. Throughout this paper I will
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ignore many such technicalities.

Our model, that is, the set of earth parameters we choose for characterizing the
earth over which we run our seismic survey, could contain many variables. For the pur-
poses of this paper, I will restrict attention to only two, and will use velocity v and
reflectivity r as the two parameters conventionally extractable from normal seismic
data. I will assume that what we really want from the data is first and foremost a some-
what vaguely defined quantity called “the position of the reflectors’; I will not deal
further with just how this is really related to amplitudes of reflected seismic waves or to
the acoustic impedance or reflectivity of the earth, except to say that I tacitly (and
admittedly circularly) assume that the source waveform has been removed, ignore band
limiting, and treat reflectivity operationally as “that which migration solves for’’. The
model space M then comprises functions of the form m (z,z )=[v(z,z),r (z,z)] where
rand z are the midpoint and depth, respectively. The model space M is thus a subset
of a function space F(R %)X F(R %)

SEISMIC EXPERIMENTS AS MAPPINGS BETWEEN FUNCTION SPACES

Performing a seismic survey with a given geometry of midpoints and offsets will
associate with any particular subsurface geology a data set d €D. We can’t pretend to
know all the details on all scales of the physics that was involved in producing these
data, but we hope that we have adequately chosen a good set of model parameters so
that this real data set is somehow “close” to a data set which could be produced by a
good enough theoretically simulated experiment with some model m €M as input. That
is, in reality there exists a “mapping’ which takes each real subsurface geology onto the
collected data; in our theory and programs there will exist a forward modeling scheme
which takes models onto data. Our ability to extract physically meaningful or useful
earth parameters from the data clearly can be no better than the degree with which our

modeling theory emulates all the details of the physical processes.

Let us assume then that we have settled on the best and most appropriate forward
modeling equation or algorithm, and trust it to adequately describe the principal features
of our seismic experiment. Designate this mapping from the function space M to the
function space D by W. In order to discuss inverting the action of ¥ we have to know
that the operator is formally invertible, which requires that it take each model to a dis-
tinct data set, and that every data set is the image of some model. The latter may well
not be true. (Does every pattern represent the outcome of a possible seismic experiment?
Would you get suspicious if the words “DRILL HERE” appeared as a pattern of

reflectors on your brute stack?) This problem is easily fixed; we simply restrict attention
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to the range Y(M)CD. Real seismic data may well not fall in this space if our chosen
model parameters or modeling theory are inadequate, and we must trust that any field
data set we wish to invert will be “close” to some d E¥(M). Our ¥ operator should not
map two dissimilar models onto the same data (except possibly for trivial cases, such as
two different velocities but no reflectors at all, which would both give zero data). With
real, band limited, noisy data there will of course be problems of poor resolution and null
spaces, but we will take our operator still to be formally one-to-one, or redefine our

model space to exclude unresolvable models.

We then take W' to be formally well defined, and ask what properties such an
operator should have. We certainly want to believe that two nearly identical data sets
correspond to very similar models, that is, we want ¥ to be a continuous operator.
The continuity of the forward operator is also desirable, but we recognize that at some
points such as critical angles or caustics, we will probably lose at least uniform con-

tinuity; small perturbations in the model might give rise to large changes in the data.

Defining continuity of course requires definition of metrics in both spaces. For our
purposes we will assume that the metric induced by a standard norm such as L, is ade-
quate in the data space. It is not obvious that such a norm is very appropriate in the
model space, since the difference of two simple models which appear to differ only
slightly can have the same norm as two models which differ radically. (Think of two
compact scatterers, or two simple planar reflectors. The norm of their difference is
independent of the distance between them provided they do not overlap.) Perhaps it is
better to define the norm in the model space by using ¥! to pull back the norm in the

data space, thus making ¥~! continuous by definition.

RESTRICTING THE OPERATOR TO SIMPLE VELOCITY FUNCTIONS

In general a good V¥ is often either not well known or is very expensive to compute
even approximately, and ¥~! may not be not known at all. One approach to inversion is
to assume that we know a model m fairly close to the desired ¥~%(d ), and try by itera-
tive forward modeling to find the m close to my for which ¥(m) is closest to d.
Another approach is to try to find an approximate ¥~ and apply it directly to the data;
usually such efforts have to assume that v(z,z) is a perturbation around a known, sim-
ple function. For a further discussion of inversion methods, see Al-Yahya (1984) and the
references therein. The approach we will take here is to select a whole family of approxi-
mations to ¥ and recompose the image after applying each of the approximate inverse
operators to d. We hope than that the recomposition provides us either with a good

inversion itself, or at least a with a better starting point than might otherwise be

SEP-42
273



Fouwler Velocity space imaging

available for one of the other types of inversion methods which require a good first guess

to begin with.

Suppose we define some class of simple velocity functions V. Then for each v €v,
we can designate the restriction of ¥ to v XF(R 2) by ¥, . That is, ¥, is the forward
modeling operator for a specific velocity function. We can now define an inverse opera-
tor W, 1 which takes the subset of the data space data ¥, (v X F(R ?)) back to the the
subset of model space v XF(R 2) characterized by the particular velocity function v. If
we have chosen V well, we may be able to specify ¥, analytically or algorithmically.
We can then extend the inverse operator ¥, ! to an operator ®, defined on the entire
data space D by formally applying that same analytic or algorithmic solution to any
data set. We cannot in general expect that @, (d) will be close to ¥7l(d) for an arbi-
trary d unless d is close to ¥, (m) for some m €v XF(R?). However, by exploiting
linear properties of the operators, we can reconstruct a good approximation to ¥i(d)

from the various @, (d).

RECOMPOSITION OF AN IMAGE

The forward modeling operator ¥ is in general not linear in velocity. To see this,
consider a single point diffracter modeled at two different velocities. The superposition
of the diffraction hyperbolas is not the same as forward modeling at the sum of the velo-
cities. However, ¥ will be linear in reflectivity, and hence the restricted operators v,
will be linear, since they are not functions of velocity. Therefore we can take the inverse
operators ¥, and their extensions ®, to be linear. We can then think of decomposing
the space (z,z) into small subsets o, forward modeling the reflectivity function defined
on each subset, and then adding together the images to reconstruct the complete data
set. Our approach to inversion then is to consider each subset o and try to find the
velocity function and reflectivity function which best match the data on that subset,

then piece together these partial models to create a whole one.

Applying each of the @, in turn produces a space which has the spatial axes z, 2,
and the velocity function v as coordinates. For the spatial axes practical application, we
will assume that the reference velocity functions used can be described by one or more
simple parameters. This transformation produces what I call generically a velocity
space. Our problems now are to specify how to extract an image from the velocity space
given a general velocity function, and how to decide what velocity function to use. Sup-
pose we specify some general velocity function vy which is not necessarily in our special
set V. For each subset «, select the velocity function v €V which is “closest” to vq on

a. For any particular reflectivity function r, let d, =W(vgor). If vy is not in V, @, (d, )
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may not look much like the reflectivity function r(z,2). However, if we restrict our
attention solely to the subset o on which v is close to vg, by the continuity of all the
functions involved, we can approximate ¥! by ®,, so ®,(d) will be an approximation
to the reflectivity on . We can repeat this for each subset o and build up a reflectivity

function defined everywhere.

We have shown how to generate the best combination of ®’s for a specified velocity
function v, However, we have again been very cavalier with the word “close”, this time
with reference to comparing velocities. What we really mean by two velocity functions
v and vy being “close” on a subset o is that, for a given reflectivity function r,
V(v (@),r (a)] and ¥[v((e),r ()] are close in the data space metric. The relation between
the actual wave propagation velocity and the best v, to use may be quite complicated;
in solving for depth variable velocity functions using constant velocity migrations for the
®, operators, the relation is known to be approximately a root-mean-square averaging
of interval velocities in overlying layers. In fact, our goal is not really to be able to go
from a specified velocity function to a reflectivity image, since we have fairly good migra-
tion techniques to do this already. Rather, we want to be able to use our suite of refer-
ence velocity function images, ®,(d), to find a good estimate of velocity as well as
reflectivity. To do this we need to appeal to the fact that our seismic experiment con-
tains multiple offsets, the information from which will be combined by stacking together
(over offset or offset wavenumber) at some point. Imaging at the correct velocity should
maximize the redundancy, or agreement between the information recovered from the
various offsets, and so should maximize the power present in the final image. This is
basically same idea as underlies most conventional velocity analysis. In fact, if we take
our modeling scheme ¥ to be ray tracing in stratified media, and our approximate
inverse operators ®, to be normal-moveout and stack at a constant velocity v, our

scheme essentially reduces to standard velocity analysis.

Most of our velocity information comes from the optimizing the power in the result-
ing image. Beyond this, however, there are other criteria, such as focusing of diffractions
and insuring continuity of reflecting horizons, which could be incorporated. We may well
want to include a priori constraints on the allowable velocity functions, too, based
perhaps on our knowledge of the limitations of our migration operators. Finally, we may

want to include some (subjective) judgements on the geological feasibility of the results.
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into a modified velocity stack algorithm except by the (expensive) sequence: NMO,
DMO, stack, phase shift migrate, each over a range over specified depth variable velocity
functions. Note, however, that if a reasonable guess is known to the real depth variable
velocity function, a rather limited range of velocity functions around the first guess
might be all that was needed. Moreover, the velocity functions could “fan out”, with
the velocity sampling interval increasing with depth where velocity resolution decreases.
Alternatively, one could perform pre-stack phase shift migration with a similar fan of
velocities. The result of either method could be expected to be more accurate than using
only constant reference velocities, since some allowance is made for the non-hyperbolicity
of diffractions in media with vertical gradients. Also, it might be possible to use substan-
tially fewer velocity functions, provided one makes any sort of reasonable guess about
the increase of velocity with depth. This decrease in number of velocities needed might,
in the case of pre-stack phase shift migration, partly or fully compensate for the
increased cost of the phase shift over the Stolt algorithm. In using either of these algo-
rithms over a range of velocity functions, of course, the forward three dimensional

Fourier transform of the data need only be done once.

A bigger challenge is to move beyond assumptions of lateral velocity invariance.
All of the methods discussed or proposed so far have been time migrations only, and will
weaken and misposition events if velocity varies laterally substantially. To attack this
problem at all, laterally varying reference velocity functions would be required. It is not
at all clear to me at this point, despite a fair amount of thought, just what the best set
of such velocity functions might be. Perhaps the simplest idea is to use velocity func-
tions with a constant lateral gradient in velocity or slowness. The velocity function then
is specified at each point by two parameters, magnitude and lateral gradient, rather than
only one. For a specified velocity function one would have to read off not only the value
of the velocity at a point, but also estimate from its neighbors the local value of the
lateral derivative. Implementation would require then, either deriving and applying a
pre-stack migration operator which explicitly was designed for known laterally variable
media, or figuring out the effects of simple lateral variation on stacking, DMO, and

post-stack migration.

Reference function imaging methods can probably be automated in part or whole.
This basically requires designing designing a good algorithm for automatic picking of a
maximum power velocity function. This is an optimization problem, probably including
reasonable constraints on the allowable nature of the velocity function such as limiting
the rapidity of the allowable lateral velocity change. For the case of the constant refer-

ence functions, this is just automating what a person does in picking velocities. For
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laterally varying velocities with more than one parameter describing each reference func-
tion at a point, an automatic picking scheme would be almost mandatory, since few peo-
ple are good at scanning through spaces of dimension of four or more dimensions, e.g.
(z,7,v,dv /dz). Any perturbation of such an automatically picked function could, of

course, be tested by the interpreter by rapid re-interpolation of the reference images.

The real question, however, is not whether extending existing velocity space
methods is possible (at least approximately), but whether the results would justify the
extra effort and cost. I do not believe that one could in general obtain a satisfactory
depth migration this way in the presence of arbitrary lateral velocity variation. What
might be hoped for is a significant improvement in the strength and positioning of the
events in the stack, that is, a better starting point for further inversion efforts.
Specifically, iterative forward modeling methods normally require identification and
digitization of a limited set of major reflectors which can be used for ray tracing, as do
tomographic velocity analysis methods. Events that are never identified because of poor
prior imaging cannot be accounted for this way, and may possibly degrade or destabilize
the quality of the result. The point here is that reference function methods perhaps can
be nearly, or fully, automated, to provide a good starting image for expensive or time
consuming iterative methods. Additionally, for cases in which the lateral velocity varia-
tion is not too large, these methods can provide both a good velocity analysis and a good

pre-stack time migration simultaneously.
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