Automatic estimation of very large residual
statics
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ABSTRACT

Conventional approaches to residual statics estimation obtain solutions by
performing linear inversion of observed traveltime deviations. A crucial com-
ponent of these procedures is the picking of time delays; gross errors in these

picks are known as ‘“‘cycle-skips” or ‘‘leg-jumps,’”’ and are the bane of linear trav-

eltime inversion schemes.

This paper is a sequel to an earlier work (Rothman, 1984), which demon-
strated that the estimation of large statics in noise-contaminated data is posed
better as a nonlinear, rather than as a linear, inverse problem. Cyecle-skips then
appear as local (secondary) minima of the resulting nonlinear optimization prob-
lem. In the earlier paper, a Monte Carlo technique that originated in statistical
mechanics was adapted to perform global optimization, and the technique was
applied to synthetic data. This paper presents an application of a similar Monte
Carlo method to field data from the Wyoming Overthrust belt. Key changes,
however, have led to a more efficient and practical algorithm. The new technique
performs explicit crosscorrelation of traces. Instead of picking the peaks of these
crosscorrelation functions, the method transforms the crosscorrelation functions
to probability distributions, and then draws random numbers from these distribu-
tions. Estimates of statics are iteratively updated by this procedure until conver-

gence to the optimal stack is achieved.

This paper also derives several theoretical properties of the algorithm. The
method is expressed as a Markov chain, in which the equilibrium (steady-state)

distribution is the Gibbs distribution of statistical mechanics.
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INTRODUCTION

The near-surface of the Earth is often highly irregular. Typical inhomo-
geneities include changes in surface elevation, uneven consolidation of soil, and
extreme lateral variations in seismic velocity. These irregularities can twice
degrade the quality of a seismic signal: first as the signal travels downward from
the source, and again when the signal returns upward to the receivers. Among
the many effects caused by the near-surface, the most obvious and most impor-
tant are often delays in recorded traveltimes. Because these timing delays distort
apparent structure and cause misalignment of signals, the analysis of seismic data
acquired on land routinely includes the use of timing adjustments called statics
corrections. In their most elementary form, statics corrections can be derived
deterministically from measurements of elevations, uphole times, and first-
arrivals—these corrections are called “field statics.” Statics corrections that can-
not be derived from these field measurements are called ‘“‘residual statics.” Resi-

dual statics are usually estimated statistically from the seismic data.

When near-surface velocity anomalies are severe, residual statics can be 100
ms or greater, which can be several multiples of the dominant period of the data.
Because noise significantly contaminates most seismic data, the automatic
identification of these large static shifts is difficult. If the true peaks of
crosscorrelation functions are obscured, then the so-called “cyéle-skipping” or

“leg-jumping’’ problem results.

A recent paper (Rothman, 1984) demonstrated that the estimation of large
statics in noise-contaminated data is posed better as a nonlinear, rather than as a
linear, inverse problem. Cycle-skips then appear as local (secondary) minima of
the resulting nonlinear optimization problem. To perform global optimization,
Rothman (1984) adapted a Monte Carlo technique that originated in statistical
mechanics and applied this technique to synthetic data. This paper presents an
application of a similar Monte Carlo method to field data from the Wyoming
Overthrust belt. Although the optimization technique introduced here is funda-
mentally the same as that previous one, several key changes have led to a more
efficient, more practical, and more readily explicable method. This paper also

derives several theoretical properties of the new statics algorithm.

The paper begins by introducing the field data example that is the subject of
later discussion. This example clarifies the meaning of the term ‘‘large statics,”
and illustrates the nature of the data-processing and interpretation problems that

large statics cause. A brief review of many of the ideas developed in Rothman
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(1984) is then followed by an explication of the new Monte Carlo technique,
which is based on the transformation of crosscorrelation functions to probability
distributions. Theoretical properties of the algorithm are discussed; in particular,
the formal connections with the theory of Markov chains are emphasized.
Finally, the application of the technique to data from the Wyoming Overthrust
belt is illustrated. Several characteristics of the algorithm emerge from the dis-
cussion of this example; the most interesting features include the the nature of
the algorithm’s approach to the final solution and its behavior due to non-

uniqueness.

VERY LARGE STATICS

Before discussing the technical details of the statics algorithm, I will first
illustrate the type of statics problem being addressed. Looking ahead to the field
data example in Figure 2a, we see a 24-fold common-midpoint stack from the
Wyoming Overthrust belt; this stack was produced without statics corrections.
These data have been previously analyzed by Johnson et al. (1983). According to
their interpretation, the survey traverses an area in which anomalous, low-
velocity fill is as deep as 500 m at both ends of the line. Indeed, lateral varia-
tions in the near surface are evident from the roughly continuous reflector that
appears on the left at about 600 ms, arches upward to 100 ms at the center of
the line, and then dips slowly downward to about 600 ms at the far right.

These data will be the subject of much discussion later in the paper. At this
time, however, it is advantageous to peek ahead to Figure 9, which shows the
data after statics corrections have been applied. As we shall see later, the com-
bined (shot plus receiver) statics corrections that yielded this stack are as large as
200 ms. After such large statics corrections are applied, the appearance of the
data changes significantly. Among the many features that have been revealed are
the steeply dipping events in the first 3 seconds of the data, and the now continu-
ous, relatively flat, deep reflector at 3.5 s.

No single quantity demarcates the “small” statics problem from the “large”
statics problem. In principle, this distinction depends on a mixture of bandwidth,
signal-to-noise ratio, and the magnitude of the timing delays. For our purposes
here, a practical delineation is defined by the success or failure of a conventional
statics algorithm. Looking ahead again, we see that Figure 11 presents one such
failure; in particular, the deep reflector (which was used to estimate the statics)

shows severe ‘‘cycle-skipping’ or ‘‘leg-jumping.” In this paper, a large statics
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problem is defined to be a statics problem in which cycle-skipping is a potential
pitfall, as it is for this set of data. The objective of the remainder of this paper
is to present an algorithm that can accurately solve for large statics without fal-

ling prey to a cycle-skipping problem.

RESIDUAL STATICS ESTIMATION BY SIMULATED ANNEALING

In addressing the problem of estimating large statics (Rothman, 1984), I
adapted the simulated annealing algorithm of Kirkpatrick et al. (1983), which, in
turn, was based on a Monte Carlo technique due to Metropolis et al. (1953).
Despite the encouraging success of the technique on synthetic data, I found my
early implementation of the Metropolis algorithm to be ineffective when applied
to the field data used in this paper. The overriding problem was computational
speed: the Metropolis algorithm is simply too inefficient. Thus a new, more
efficient, and more readily vectorizable algorithm was developed. The new tech-
nique uses the familiar tool of crosscorrelation, yet it maintains the same proba-
bilistic properties of the earlier method. Thus the technique retains the crucial

ability to escape local minima.

Before discussing the new developments, I will first briefly review the ele-

ments of the previous method that are necessary to clarify the ensuing discussion.

Review

Statics estimation is posed as the following problem. Let the unknown shot
and receiver statics be represented by the vector-valued parameter x. Following
Ronen and Claerbout (1985), I assume that the quality of the statics solution can
be quantified by the power in a common-midpoint stack, and seek the solution of
the optimization problem

min F (x) , (1)

X

where E is the negative power of the stack. This optimization problem is
addressed here for cases in which statics are large; that is, when cycle-skipping is
a problem. Because cycle-skips appear as local minima of E, optimization must

be performed globally instead of locally, thus avoiding the local minima.

Optimization of (1) can be nontrivial: linearized techniques that descend to
the nearest minimum often fail when statics are large. A previous paper (Roth-
man, 1984) demonstrated global optimization by simulated annealing (Kirkpa-

trick et al., 1983), which is a method based on an analogy between optimization
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and crystallization. Briefly stated, the idea is to generate a sequence of parame-
ter vectors in a way that mimics thermal equilibrium. By slowly lowering a con-
trol parameter analogous to temperature, a system that simulates equilibrium
eventually settles into its global minimum, or, analogously, its ground state.
Thermal equilibrium is simulated by use of the Metropolis algorithm (Metropolis
et al., 1953). To estimate residual statics, the Metropolis algorithm sequentially
“visits” each shot and receiver static and conditionally assigns a new, randomly
chosen value to it. The change in stack power, AE, is then computed. If
AE < 0 (i.e., if stack power increases), then the new value for this shot or
receiver static is always accepted. If AE > 0, then the new value is accepted
sometimes, with probability exp{-AE /T }, where T is ‘‘temperature.” Each
time a new value is accepted, the stack is accordingly updated. Note that the
objective function, negative stack power, is occasionally allowed to increase, so
that local minima can be escaped. Random moves according to these rules even-
tually simulate thermal equilibrium, and when 7T is small enough the global

minimum can be approximately located.

Transforming correlation to probability: Random moves in one step

The Metropolis version of the statics algorithm sequentially cycles through a
two-step scheme for each parameter: (1) a random guess for the static shift is
made; and then (2) a decision is made to either accept or reject this new guess.
For the reasons discussed below, the new technique consolidates the two-step
Metropolis method into a single step in which a random guess is made and

always retained.

When estimating statics, the Metropolis random guesses are uniformly likely
between some predetermined maximum and minimum value for each static. In
the field data example of this paper, statics are initially limited to the range
+160 ms. Coarse discretization at 8 ms intervals would then yield 41 possible
values from which one could draw a random guess if one were to use the Metrop-
olis technique. If the Metropolis algorithm were to locate a region near a deep
minimum at a low temperature, then only a very few of these 41 candidates
would be acceptable guesses. Much effort can therefore be wasted in the evalua-

tions of random guesses that have a high probability of rejection.

The new technique avoids low acceptance-to-rejection ratios by computing
the relative probabilities of acceptance for each possible move before any random

guesses are made. Instead of making random guesses that are then accepted or
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rejected, the new method simply produces weighted guesses that are always
accepted. In contrast to the two-step Metropolis method, this is a one-step tech-
nique. The one-step method sequentially ‘‘visits” each shot and receiver static
X, , and calculates stack power ¢,, as a function of static shift s; for each of N
possible shifts. The algorithm then chooses a new value for X,, by drawing a

random number from the probability distribution
exp{ ¢y, (5;)/T }
P Xy =s;) = —x — ’ )
Z exp{ ¢m ('sj )/T }

j=1

This new value for X, is always retained and the stack is always updated,
regardless of the change in stack power. As the power ¢,, (sj ) increases, the pro-
bability that the algorithm chooses X,, = s; also increases. Choices that

decrease power, however, are also possible; they are just less likely.

The discussion in the next section and the results in the Appendix show that
the one-step technique is formally equivalent to the Metropolis method; thus both
methods simulate thermal equilibrium. The similarity of the two techniques can
be seen by considering the effects of each method on a single parameter. If one
were to employ the two-step Metropolis rules many times to repeatedly update
X, » then the initial value of X,, would eventually be ‘‘forgotten,” and the fre-
quency of occurrence of each possible s; would be proportional to the probability
distribution (2), which is also the distribution from which random moves are
drawn using the one-step technique. Repeated application of the Metropolis rules
to X,, simulates the physical effects of a heat bath surrounding X,, . In this heat
bath, the “states” of X,, (e.g., molecular positions) would be distributed with
equilibrium probabilities proportional to exp{-E (s;)/ T}, where E is energy and
s; denotes some physical parameter of interest. Thus, by sampling from the pro-
bability distribution (2), we are sampling from a local equilibrium distribution.
Sampling from these local equilibrium distributions for each X,, significantly
facilitates the approach to global equilibrium, which must be approximated at a

low temperature if simulated annealing is to yield a reasonable result.

In the literature of Monte Carlo simulations in statistical physics, the one-
step technique is known as the heat-bath method (Rebbi, 1984; Creutz, 1984).
Recently, Geman and Geman (1984) adapted this method in their application of

simulated annealing to image restoration.
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Although the heat-bath method is fundamentally the same as the Metropolis
algorithm, for circumstances in which the probabilities (2) are readily comput-
able, the heat-bath method can be far more efficient. We can see this in residual
statics estimation by considering the practical details of implementation. As
shown by Ronen and Claerbout (1985), the crosscorrelation function of two traces
differs from the stack power function by only a constant. Therefore one can com-
pute ¢,, (s;) by crosscorrelation, and the missing constant becomes irrelevant
because the probability distribution is normalized. By viewing the probability
distribution in equation (2) from this more familiar perspective, we can now see
that it is just a crosscorrelation function that is scaled by T, exponentiated, and

then scaled again so that it has unit area.

The temperature, T, determines the relative probabilities of each possible
static shift; this is illustrated by the sequence of functions in Figures 1a-c. Figure
la is a normalized crosscorrelation function computed from the Wyoming data.
Conventional statics algorithms would usually choose the lag (56 ms) that yields
the maximum correlation for use in some estimation scheme. Because this lag
might correspond to a skipped cycle, however, the one-step method considers all
possible lags, and favors each lag by the weights given in equation (2). Figure 1b
shows the transformation of the crosscorrelation function of Figure la into the
probability distribution (2), with T = .044. We see that the modes (peaks) of
the resulting probability distribution correspond to the peaks of the crosscorrela-
tion function. Figure 1lc depicts the effects of a lower value for T, now .013.
The greatest peak is now strongly accentuated relative to the others. As T goes
to zero, this peak becomes a spike of unit height. Thus the zero temperature, or
“quenching’ algorithm, always picks the greatest peak, and would always arrive

at the nearest minimum.

The spikiness of the probability distribution (2) is controlled not only by T,
but also by the quality of the stacked traces against which crosscorrelation is per-
formed. Thus, in order that the algorithm can converge to an approximation of
the best possible stack, it is important that T be chosen to be high enough to
allow the stack to change significantly, yet low enough so that the probability
distribution (2) is sufficiently spiky when the correct solution is nearly achieved.
The greatest advantages of the one-step method are incurred when the distribu-
tion (2) is composed of only a few spikes and near-zero values elsewhere. The
correct value for X,, can then be located after only a few iterations (one iteration

includes one attempt to change the value of each parameter). With the two-step
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FIG. 1a. A normalized crosscorrelation function.
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FIG. 1b. Transformation of the crosscorrelation function in Figure 1a into a pro-
bability distribution using equation (2), with ¢,, taken to be crosscorrelation,
and T = .044. Note the general correspondence of the peaks and troughs in
Figures 1a and 1b.
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FIG. 1lc. Transformation of the crosscorrelation function in Figure 1a into a pro-
bability distribution using equation (2), with ¢, taken to be crosscorrelation,
and T = .013. Compared to Figure 1b, the tallest peak is now strongly accen-
tuated relative to the other peaks; thus the lag (56 ms) corresponding to that
peak is strongly favored when random samples are drawn from this distribution.

technique, however, guessing and accepting the correct value can take several

hundred iterations or more.

Although it might appear that each calculation of the probability distribu-
tion (2) would require about N times the computation that an equivalent
Metropolis move requires, modern array processors allow the crosscorrelation
functions to be calculated rapidly at a cost that is a modest function of the
number of lags. Thus the additional information that is contained in the

crosscorrelation function more than compensates for the cost of obtaining it.

Before illustrating the results obtained using this method, I will first briefly

introduce some of the theoretical properties of the technique.

THEORETICAL RESULTS

In the remainder of this paper, the one-step method is referred to as the
Monte Carlo statics estimation algorithm. In this section, I present the
mathematical theory underlying this technique. Similar theory has long been

applied to problems in statistical physics, and the reader seeking general reviews
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is referred to the two volumes by Binder (1979, 1984), the book by Hammersley
and Handscomb (1964), and the article by Fosdick (1963).

Theoretical results are presented here for the Monte Carlo statics algorithm
when it is run at constant temperature. Similar results for the Metropolis algo-
rithm can be found in the original paper by Metropolis et al. (1953) and the refer-
ences mentioned above.

The following notation is used. There are assumed to be M parameters
X={X;,X,, --,X)}; these are the unknown statics for each shot and
receiver. X; is taken to be a random variable; z; is its value. Each parameter
may assume only one of N distinct values; thus there are N possible values for
each z;. A state x; (note boldface) is any combination of values assumed by the
entire set of parameters X. Because there are M parameters that may each
assume one of N values, there are a total of N distinct states of the system.

N is typically on the order of 50, and M can be several hundred or more.

Markov chains

The basic objective of the Monte Carlo statics algorithm is to generate states
x; from the probability distribution

exp{-E(x;)/ T}
S e E(x;)/ TT ° )

JEA

where E is the negative stack power, and j € A = {1, 2, ..., NM}. If x; were
the configuration of a physical system, E its energy, and T scaled by
Boltzmann’s constant, then equation (3) would be the Gibbs (or canonical) distri-
bution of statistical mechanics. Justification of the use of the Gibbs distribution
for residual statics estimation is given in Rothman (1984); here we restrict the

discussion to an explication of technique.

The problem, then, is to generate states x ; with probability II;. This gen-
eration is called importance sampling (Fosdick, 1963; Hammersley and
Handscomb, 1964). Note that the {IT; } cannot be explicitly computed because
there are N¥ terms in the denominator. If we can, however, generate states
with the distribution (3) when T < <FE (x), then states that yield the greatest
stack power can be selectively favored due to the exponential weighting, and
approximations of the best stack can be generated. The generation of random

states from (3) is performed by construction of a Markov chain.
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A Markov chain is a sequence of states in which the probability of each
newly generated state depends only on the previous state, not on any others.
The Monte Carlo statics algorithm is a Markov chain in which each state is a
new set of timing delays for each shot and receiver. Consider these states to
evolve over a sequence of iterations indexed by ¢. The notion of immediate

dependence is formally expressed by

P(Xt =XJ IXt_1=x coc ,X2=x,-2, X1=x,-1) = P(Xt =x]' lXt_lr-x,-H) .

USY

The probability of going from any state x; to any state x; in one iteration is

stationary in time, and is given by the transition probability
pij = P(xi—x;) = P(X;=x; | X; ;=x;) - (4)

Most important developments in the theory of Markov chains concern the evolu-
tion of a chain over time. Generalizing equation (4), let p,'](") be the probability

. in n iterations:

of transition from x; to x;

Pi](n) = P(Xt':xj | X =%;) .

The results in the Appendix, summarized below, show that as n — oo the proba-
bility of the Monte Carlo statics algorithm going from x; to x; is independent of

the initial state x; .

Results: The steady state

It is shown in the Appendix that the Monte Carlo statics algorithm exhibits
the limit
I; = lim p;{®) . (5)

J  —00 J

{I1; } is the Gibbs distribution (3); it is called the equilibrium, or steady-state,
distribution of the Markov chain. The term equilibrium is used here as it is in
physics: it describes the behavior of the system after the system has “forgotten”
its initial state. Because the low-energy (high-stack-power) states are exponen-
tially favored by the distribution {II i }, equilibrium at low T approximates the
global minimum. Thus the algorithm is theoretically sound if it is run at low T
for a sufficiently large number of iterations. Yet this procedure might be, of
course, far from practical. How, then, does one reconcile the theory with prac-
tice?

Reconciliation begins by experimentation. In principle, it is easy to see why

the algorithm should work if T is lowered sufficiently slowly so that equilibrium
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is attained for every T —this is how Kirkpatrick et al. (1983) originally proposed
the concept of simulated annealing. The experimental results illustrated in the
next section, however, show that the choice of a sufficiently low constant tem-
perature is indeed practical: we need only wait for equilibrium at this one tem-
perature. The solution is obtained by dropping immediately from a high T to a
low T, and then maintaining this low T for almost 2000 iterations. As
described in the next section, the exact specification of the low T is determined
by previous experimentation. Because equilibrium is attained at low T, the algo-
rithm locates a deep (if not the deepest) minimum. The success of this approach
depends, of course, on how rapidly equilibrium can be reached. In general, the
approach to equilibrium slows down as the temperature decreases and/or the

number of deep minima increases.

EXPERIMENTAL RESULTS

Conventional methods of estimating statics (e.g., Wiggins et al., 1976; Taner
et al., 1974) produce favorable results when static shifts are small enough and sig-
nal quality is good enough so that cycle-skipping is not a problem. The field data
example that was introduced briefly at the outset of this paper exhibits an unusu-
ally severe statics problem, however, and is thus an excellent test case for Monte

Carlo statics estimation. This section details the results of that test.

The data

The seismic section in Figure 2a is a 24-fold ‘“‘raw’ or ‘“brute’ stack; this
stack was produced without any statics corrections. Figure 2b shows two
representative common-midpoint gathers. The data were collected in the Wyom-
ing Overthrust belt; a 48-trace, split-spread cable was used. The source was
Vibroseis, with an 8-55 Hz sweep. The data have undergone the following pro-
cessing steps: (1) predictive deconvolution; (2) bandpass filtering, from 8 to 35 Hz;
(3) normal-moveout (NMO) corrections; and (4) automatic gain control. Stacking
velocities were laterally invariant. No field statics corrections were made. The
cablelength extends over approximately 100 stacked traces (3350 m), which is
about 60% of the section. Both ends of the line exhibit the usual roll-on and
roll-off, so the first and last 24 stacked traces are less than 24-fold.

Although it may not be immediately obvious that these data suffer from a
statics problem, supporting evidence exists. As discussed earlier, a strong, shal-

low reflection in the stack (Figure 2a) appears to arch downward from about 100
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ms at the center of the section to about 600 ms at both sides. We shall see later
that this is the reflection from the base of low-velocity fill. The gathers (Figure
2b) reveal the unusual character of the reflection at approximately 3.5 s.
Although the same velocity function was used to correct for normal moveout in
both gathers, CMP 34 shows the event dipping upward with offset, whereas CMP
64 (only one-third of the cablelength away) shows the event dipping downward.
Furthermore, in the stack, this event exhibits gross discontinuities that mirror
the shallow, arched reflector—this consistency with depth is a good indication of

near-surface velocity variations.

One could construct a model of the presumed shot and receiver statics, and
then, if necessary, input this model as the initial guess in a conventional, linear-
ized algorithm. Johnson et al. (1983) were able to manually construct a model
based solely on a geologic interpretation of these data; from the model they then
produced a successful stack. A comparable result, obtained using only the Monte

Carlo statics algorithm, is discussed below.

Processing parameters

Statics are estimated from normalized crosscorrelations of the data between
2.9 and 3.9 s, thus concentrating on the prominent reflector at approximately 3.5
s. Static shifts are constrained to fall within +160 ms, in 8 ms increments; each
crosscorrelation is accordingly performed over 41 lags. Shot statics are estimated
independently of receiver statics. There are 85 source locations and 90 receiver
locations, resulting in a total of 175 free parameters. Because each parameter

1175

may assume any of 41 values, there are 4 possible solutions.

Choices for the temperature parameter, T, inevitably depend on the data.
In this example, the primary objective is to mend the discontinuities on the left
side of the section between traces 20 and 80 (see Figure 2a). Because statics
appear to have caused a very large (approximately 200 ms) break, we need more
than just an incremental change in the apparent structure in the stack. Thus the
initial choice of T must be high enough so that the statics are given the freedom
to mend the deep reflector. From a mathematical point of view, this requirement
is equivalent to saying that the input stack (all statics equal zero) is already
located near a sub-optimal local minimum, and that the initial T must be high
enough so that this minimum can be escaped easily. The input stack is recog-
nized as being near a local minimum because the reflections already stack in well

in isolated regions of the stack. In these zones, the input stack is locally
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satisfactory. When one views the stack globally, however, one sees that consider-

able changes are necessary to make the deep reflector continuous.

Once the algorithm departs from the region near the initial minimum, T
can then be quickly lowered to a minimum temperature, T ;.. T pip is chosen
by previous experimentation: it must be high enough so that local minima are
escaped, but low enough so that convergence can occur only in the deepest
minimum, or in minima that are nearly as deep. It is unlikely that the algorithm
will return to the initial location (the input stack); because the method generates
solutions x with a frequency proportional to exp{~FE (x)/ T min}, deep minima are

more probable than the more shallow initial position.

Our objective, then, is to approach equilibrium as rapidly as we can at a
temperature that is low enough to strongly favor the global solution, yet high
enough to ignore the overwhelming number of shallow minima. This goal
assumes a simple model in which the objective function contains a few very deep
minima among a multitude of shallow minima. Thus far this appears to be a rea-
sonable model for data with large statics and moderate noise contamination,

which is the case in this example.

One might think that it is inefficient to begin with a high T : statics are
chosen that significantly decrease the stack power, leading to the loss of all struec-
ture in the data. However, if one were to begin instead at T ;,, the approach to
equilibrium would be far slower because much time would be expended attempt-
ing to climb out of the initial minimum. (In practice, this ascent may appear
impossible.) By starting at a high temperature, the algorithm begins at one of
the highest locations on the objective function. Although we still risk entrap-
ment in a local minimum, the probability of entrapment is significantly lowered

by our not beginning near a local minimum.

The temperature function chosen in the following example has the form

of Ty of Ty > Toin
Tk ==
T nin s otherwise

where T, is the temperature for the kth iteration (one iteration includes one
attempt to change the value of each parameter), o = .99, T, = .045, and
T in = -0265. For this choice of parameters, T} = T

tions. T, was chosen to insure that the structure in the input stack would be

after only 53 itera-

min
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destroyed quickly. In practice, the specification of T requires just a few (if any)
quick tests of only a few iterations each. The choice of « is fairly arbitrary.
Choosing T ,;,, however, is not so simple; a workable value is determined only
after a fair amount of experimentation. Before the result discussed below was
obtained, it was necessary to run 4 full-length test runs (of about 1000 iterations
each) with different values for T ;. If T, is too high, then convergence will
not occur within a reasonable number of iterations; if T ;, is too low, then the
algorithm is likely to converge to a horrendous and obvious local minimum. It
appears thus far that the algorithm’s sensitivity to T ., is substantial: differences
of just a few per cent can lead to very dissimilar results. Fortunately, however,
systematic experimentation with a range of values yields the correct T .,

without undue difficulty.

Results

Figures 3a-e depict the progress of the statics estimation algorithm at
different points in the iterative process. Each of these figures is a 24-fold stack
that is performed after corrections are made with the current estimate of the
statics. Figure 3a displays the stack after 5 iterations; we see that T = .045
leads to immediate obliteration of all spatial coherence in the stack. By iteration
53, T = T in, but after 1000 iterations (Figure 3b) the stack still exhibits no
improvement over the result in Figure 3a. By iteration 1125, however, conver-
gence begins; this stage is illustrated in Figure 3c. The algorithm then rapidly
descends into a minimum, as is evident in Figure 3d, the stack after 1250 itera-
tions. The algorithm was run for 2000 iterations. The stack with the greatest
power was achieved in iteration 1835, and is shown in Figure 3e. It should be
compared with Figure 2a, the stack of the input data. We see now that the deep
reflector has not only become continuous across most of the section, but also that
the statics corrections have revealed steeply dipping events in the more shallow
data. There are two apparent imperfections in Figure 3e, however. First, the dip
of the deepest reflector appears to have reversed, and second, the far right side of
the same reflector appears to be artificially discontinuous. Both of these

shortcomings will be addressed soon.

Figure 4 summarizes the results of the 2000 iterations in one graph; stack
power is plotted as a function of iteration. Stack power is computed only within
the computation window (2.9-3.9 s), and the power of the input is normalized to

one. Power quickly decreases to about .5, and does not begin to rise until after
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FIG. 2a. 24-fold stack of data from the Wyoming Overthrust belt; the stack is
performed prior to statics estimation. One time-variable stacking velocity func-
tion was used for the entire line. The data used for residual statics estimation
are between 2.9 and 3.9 s. The strong reflections at the near surface are roughly
indicative of the near-surface velocity variations. The first and last 24 traces are
underfold due to the usual roll-on and roll-off.
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FIG. 2b. NMO-corrected common-midpoint gathers 34 and 64; the gathers are
displayed without statics corrections. Offset increases in each plot from the
center outward. Both gathers are corrected with the same velocity function. The
near-surface velocity anomalies have produced dipping structure in events that
should be flat; this is most evident in the data near 3.5 s. In gather 34, dip
appears to bend upward with offset. In gather 64, just one-third of a cablelength
down the line, dip now appears to bend downward with offset.
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FIG. 3a. Stack after 5 iterations of the statics estimation algorithm. T, was
chosen high enough so that all reflection events are now obliterated. This choice
removes all tendencies for the algorithm to make only incremental improvements
in the stack, as would be expected from a linearized technique. Amplitudes are
greater at the sides because of the low fold at the ends of the line.
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FIG. 3b. Stack after 1000 iterations of the statics estimation algorithm.
T = T,;, from iteration 53 onward. No appreciable differences are evident

between this stack and the result after 5 iterations (Figure 3a).
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FIG. 3d. Stack after 1250 iterations of the statics estimation algorithm. Conver-
gence is now almost complete; only the ends of the line have not converged.
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FIG. 3e. Stack after 1835 iterations of the statics estimation algorithm. Of the
2000 iterations, this stack yielded the greatest stack power. This stack should be
compared Wlth the stack of the input data in Figure 2a. The deep reflection is
now continuous throughout much of the section. Moreover, this statics solution
has uncovered steeply dipping structure in the first 3 seconds of the data. Two
imperfections are apparent, however. First, the dip of the deep reflector appears
to have reversed, and second, the extreme rlght end of the line shows artificially
discontinuous reﬂectlons
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FIG. 4. Stack power as a function of iteration number, for the example illus-
trated in Figures 3a-e. The input stack power is normalized to 1. Power is com-
puted within the estimation window, which extends from 2.9 to 3.9 s. Power ini-
tially decreases quickly to about .5. T decreases from .045 to .0265 during the
first 53 iterations; thereafter it remains constant. Convergence begins at approxi-
mately iteration 1000. A sharp increase in power occurs near iteration 1150; this
rapid change is analogous to crystallization. Global convergence occurs after
about 1400 iterations. The remaining 600 iterations yield essentially similar
stacks except for the behavior at the far right. The power of the stack displayed
in Figure 3e is 1.553, which is the greatest power of the 2000 iterations.

1000 iterations. Beginning at approximately iteration 1150 there is a sharp
increase in power; convergence finally occurs by about iteration 1400. The stacks
produced by the remaining iterations were roughly equivalent except for the
behavior at the far right, which never became stable. The maximum stack power
occurred in iteration 1835 (Figure 3e), where the power is 1.553.

Figure 5 shows the same two gathers in Figure 2b; statics corrections from
iteration 1835 have now been performed. In gather 34, the upward dips at far

offsets have now been flattened. Gather 64 has had its downward dips also lev-
eled.

Figure 6 shows the estimates of the shot and receiver statics; these estimates
were produced by iteration 1835, the best of the 2000 iterations. The static shifts
extend the full range within +160 ms, and most of the variations are smooth.

Examination of the stack in Figure 3e in conjunction with the graphs of shot and
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FIG. 5. The same two NMO-corrected common-midpoint gathers of Figure 2b,
now shown after statics corrections from iteration 1835 have been made. Both
show substantial alignment after application of the statics solution.
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FIG. 6. The shot and receiver statics output by iteration 1835. Shots 17-20 and
shot 24 were skipped; these are plotted as zeroes. At the right end, statics are as
large as 160 ms, which was the upper bound. Examination of the stack in Figure
3e in conjunction with these graphs suggests that the ‘‘true’ statics at the right
end are greater than 160 ms, thus resulting in the artificial discontinuity in the
deep reflector in Figure 3e.

receiver statics reveals the cause of the artificial discontinuity in the deep
reflector at the right end. The “‘true” statics at the right end of the line are
apparently greater than the upper bound, which was 160 ms. The algorithm thus
found the best available solution, which unfortunately resulted in a large
mismatch at the end of the line. The magnitude of this mistake is roughly indi-

cative of the size of the statics being considered for the solution.

This error at the right side can, of course, be corrected. The Monte Carlo
statics algorithm was run again; this time the statics of Figure 6 were the start-
ing guess. To allow the estimation of larger statics, the upper bound was dou-
bled to 320 ms, and the estimation window was also doubled to extend from 2 to
4 s. Temperature remained at T = T _;, = .0265 throughout. After 250 itera-
tions, the stack in Figure 7 was produced. The deep reflector is now continuous
throughout the section, and the more shallow reflections also show greater con-
tinuity on the right side. Figure 8 shows the statics that were used to produce

the stack in Figure 7. Statics are now as great as 256 ms; this high level supports
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FIG. 7. Stack produced after the Monte Carlo statics estimation algorithm was
run again, this time using the statics of Figure 6 as the starting guess. To allow
the estimation of larger statics, the upper bound was doubled to 320 ms, and the
estimation window was also doubled to extend from 2 to 4 s. This stack was pro-
duced after 250 iterations, in which T = T ,, = .0265 throughout. Compare
with the stack in Figure 3e: the deep reflector is now continuous across the entire
line, and the more shallow reflections are stronger, especially in the region on the
right between 2.0 and 2.5 s. The stack power is now 1.687.
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FIG. 8. The shot and receiver statics used to produce the stack in Figure 7.
Statics are now as great as 256 ms; this high level supports the conclusion that
the previous upper bound of 160 ms had been too small.

the conclusion that the upper bound had previously been too small. The stack

power calculated for the estimation window is now 1.687.

The dip reversal on the deep reflector must be suspect. Statics solutions are
highly non-unique; that is, different solutions can yield the same stack power.
The most obvious non-unique component is a simple shift (up or down) of all
shot and receiver statics by the same amount. This shift changes the timing of
events, but the stack power remains the same. A linear trend in the shot and
receiver statics is also not uniquely determined (see Taner et al., 1974; Wiggins et
al., 1976; or the elegantly simple derivation by Ronen and Claerbout, 1985).
Thus, from the viewpoint of statics estimation, the dip on a common-midpoint
stack is completely unresolved by the data. The contribution from the linear
trend can be removed, however, by fitting a regression line to the average of the
shot and receiver statics and then subtracting it (Ronen and Claerbout, 1985).
Figure 9 shows the stack produced by subtraction of the linear trend, and Figure
10 shows the corresponding shot and receiver statics. The prevailing dip of the
deep reflector now matches the input (Figure 2a) well. It is interesting to note

that the statics in Figure 10 now extend only up to 120 ms. Also, the shape of
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FIG. 9. Stack produced after the linear trend in the shot and receiver statics of
Figure 8 was subtracted. Because the linear trend in the statics is fully
unresolved by the data, any prevailing dip on the stack is equally as good as any
other dip. Elimination of the linear trend thus discards this nonuniquely deter-
mined component of the solution. The prevailing dip on the stack now matches
the dip on the input stack (Figure 2a) well. This is the final solution: note the
considerable differences in quality between this stack and Figure 2a.
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FIG. 10. The statics of Figure 8, now shown after subtraction of the linear trend.
Note that the shape of both the shot and receiver statics is roughly opposite that
of the near-surface reflector seen on the input; this shape indicates that this
reflection occurred at the base of low-velocity fill.

the statics is roughly opposite that of the near-surface reflector on the input (Fig-
ure 2a); this shape indicates that this reflection occurred at the base of low-

velocity fill.

If one expects that the objective function, the negative stack power, contains
few or no local minima, then one can sequentially choose for each shot and
receiver the static shifts that yield the greatest crosscorrelation coefficient. This
process is optimization by tterative tmprovement, or, equivalently, Monte Carlo
statics estimation with T = 0. A test of iterative improvement was run on the
data of Figure 2a; the test used processing parameters (except for T ) identical to
those used to generate the stack in Figure 3e. The result is shown in Figure 11;
convergence was attained after only 13 iterations. All reflections have been
enhanced, but the poor stack in the region between traces 20 and 80 still remains.
This “‘cycle-skipping” is most evident at about 3.5 s, where the reflections should
be laterally continuous—compare with Figures 3e, 7, and 9. Because the statics
for these data are so large, many local minima exist; thus iterative improvement
fails because it finds only the nearest minimum. The stack power for this result
is 1.395.
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FIG. 11. Stack after application of a statics solution obtained by a process that
iteratively chooses the best value for each shot and receiver static until stack
power can no longer increase. This process is equivalent to Monte Carlo statics
estimation with T = 0; i.e., quenching. All other processing parameters are
identical to those used for the example in Figures 3a-e. Convergence occurred
after only 13 iterations. This stack should be compared with the solution
obtained by simulated annealing with non-zero T, shown in Figure 3e (and also
Figures 7 and 9). Because this technique of iterative improvement converges to
the nearest extremum, cycle-skipping can be a problem. Cycle-skipping is evi-
dent in the region near 3.5 s, which should exhibit a continuous reflector.
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Discussion

Several interesting characteristics of the Monte Carlo statics algorithm
emerge from the example illustrated in Figures 2-10. I detail a few of these

features below.

Perhaps the most interesting result of this test is the rapid, almost discon-
tinuous jump in power that occurs at approximately iteration 1150. Looking at
the stacks in Figures 3a-e, we see that this jump corresponds to a period of rapid
change in which the stack is transformed from almost total disorder to a very
reasonable approximation of the final solution. This behavior is analogous to the
sudden crystal groupings that occur when a liquid approaches its freezing point,
so the behavior may be aptly labeled a critical phenomenon. In this example of
statics estimation, however, there is no obvious passage through a critical tem-
perature T, (i.e., the freezing point). I instead choose a T ;, < T, and wait for
the system to reach equilibrium. The system eventually falls into the equivalent
of a potential well. This abrupt transition underscores the analogy to statistical

mechanics and crystallization.

Carrying this analogy even further, one can foresee how the placement of a
“seed” would help the “crystal” grow. This idea is indicated in Figure 2c. The
rapid increase in power beyond this point (1125 iterations) was possible because
the barest indication of a good stack had spontaneously formed. If there were
enough prior knowledge of the correct solution so that just a few statics could be
held constant during a run, then convergence to a high-stack-power solution
should be significantly faster. In practice, it might often be possible to hold some
statics constant when a zone of large statics is enclosed by data that are rela-
tively free of statics (i.e., when there is a statics “bust”). The statics surrounding
the poor region could then be held to zero while the algorithm searched for the
optimal statics in the inner zone. The good stack in the surrounding region
should propagate into the poor zone in a way that would be analogous to the

nucleation of a crystal.

In a practical context, Monte Carlo statics estimation would be most
efficiently used only to approximate the best stack, not necessarily to find it. In
the Wyoming example, each static could be only an integral multiple of 8 ms;
thus the true optimal (non-discretized) solution was surely missed. The best esti-
mate from a Monte Carlo statics algorithm should be used as the initial guess for
a conventional, linearized technique. Simulated annealing does not replace con-

ventional statics algorithms, but this Monte Carlo method can be a useful tool
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when conventional methods fail.

Monte Carlo statics estimation must be carefully used, however, because the
solutions are non-unique. Simulated annealing can discriminate among minima of
different depths, but it clearly cannot choose among minima of the same depth.
Unless otherwise constrained, the algorithm will settle into the first deep
minimum it finds, regardless of the magnitude of the non-unique contribution to
the solution. Thus, as illustrated in the Wyoming example, dips can change con-
siderably. One way to rectify this problem is to eliminate the poorly determined
components of the solution; this technique is demonstrated in Figures 9 and 10.
Another method would be to filter out the non-unique components after each
iteration (Ronen, pers. comm.). As in any poorly determined inverse problem, it

is wise to interpret the solution carefully.

The final solution can be surprising: statics estimation by simulated anneal-
ing is powerful enough to produce a virtually unpredictable change in the
apparent structure in an input stack. In fact, Monte Carlo statics estimation can
reveal structure where no previous hint exists. Although the input stack in Fig-
ure 2a does show clear reflection events, the solution was actually obtained after
passage through complete disorder, as illustrated by Figures 3a and 3b. This
firmly attests to the power of the technique.

Given, then, that the Monte Carlo statics algorithm can create something
from nothing, one must question the accuracy of the solution that it produces.
Other than non-uniqueness, the reliability of the solution can be measured by
comparing the improvements inside the statics estimation window with the possi-
ble improvements outside the window. In this example the two improvements
compare favorably: the new continuity in the deep reflector appears below steeply
dipping events that were not apparent before. Thus the shallow data act as an
independent confirmation of the result.

CONCLUSIONS

This paper establishes that Monte Carlo statics estimation can be used suec-
cessfully in a practical setting. The Wyoming Overthrust data present severe
statics that can produce the classic cycle-skipping problem, but the result illus-
trated here shows that cycle-skipping need no longer be the difficult, if not insur-

mountable, problem it has previously been for automatic statics algorithms.
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The objective of this work is to obtain useful solutions that alternative
automated techniques cannot find. Although the use of thousands of iterations
might appear impractical, it might be a necessity. The number of possible solu-
tions for the Wyoming example is immense—practically, infinity; thus the mere

attainment of a reasonable solution is intriguing.

The obstacle of obtaining a solution in a reasonable length of time is not,
however, trivial. Because the one-step (heat-bath) method is significantly more
efficient than the Metropolis technique, it is regarded as an essential ingredient in
the quest for practical capabilities. Its success stems from its focusing specifically
on cycle-skips, rather than randomly choosing among all possible shifts. Yet the
algorithm is, of course, slow. The nonlinear nature of the problem appears to

preclude a truly fast method.

A more efficient technique might be possible, however, if the problem were
posed differently. The Monte Carlo algorithm treats statics as a fully nonlinear
problem, thereby extending our ability to estimate statics from a linear into a
completely nonlinear realm. But perhaps the problem need not be fully non-
linear; for example, there should be a method that would more strongly discount
the possibility of producing a highly disordered stack, at any stage of the itera-
tive process. A more effective algorithm would merge the efficiency of linearized
techniques with the Monte Carlo method’s crucial ability to escape local minima.

Random wandering would be limited, but not eliminated.

No systematic, empirical study of statics estimation by simulated annealing
has yet been undertaken. Among the many unresolved issues is the algorithm’s
reliability: no two runs with identical parameters will exhibit identical behavior if
different random numbers are used. Although global optimization with a given
T may succeed, another attempt might fail. Preliminary tests indicate that the
algorithm is workably reliable. The method’s theoretic generality obviously gives
in to practicality, but at exactly what point remains unknown. As deep minima
become more numerous, global optimization becomes harder to achieve. In gen-
eral, the number of deep minima increases as the magnitude of the statics

increases, and as the signal-to-noise ratio and the bandwidth decreases.

The behavior of the algorithm can appear magical: from complete disorder, a
relatively structured, ordered stack can appear. Order/disorder transitions in
physics produce much the same effect. To the extent that both phenomena are
understood, both can be explained in the same way: for a system in equilibrium,

low energy states are more probable than high energy states. This statement of
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probability does not fully discount the possibility of entrapment in a local

minimum, but does strongly bias the search toward the deepest minima.
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APPENDIX

This appendix shows that the Monte Carlo statics estimation algorithm pro-
duces a series of parameter vectors with the Gibbs probability distribution (3),
when the algorithm is run at constant 7 for an infinite number of iterations. To
obtain this result, I describe the algorithm as a Markov chain, and then show
that the standard limit theorem (stated below) holds. The basic properties of
Markov chains are sketched only briefly. Readers unfamiliar with the general
theory should refer to Chapter 15 of Feller (1968), Kemeny and Snell (1960), or
any other relevant text.

Preliminaries

In this appendix, I refer only to those Markov chains having a finite number
of states. A chain is irreducible if every state can be reached (after an arbitrary
number of iterations and with some positive probability) from every other state.
Any state x; is said to be periodic if the probabilities of recurrence py{*) are
non-zero only for some n >1 and an integral multiple of n. Otherwise, x; is
termed aperiodic. The following theorem (see, e.g., Feller, 1968; or Kemeny and

Snell, 1960) will be employed in the derivation of the main result:

If a Markov chain is irreducible and apertodic, then the limits

U, = lim p,{") (A-1)

J n—oo W

exist and are independent of the initial state x;. The numbers {U; } uniquely

satisfy
Ui > 0, ZU]- =1 (A-2)
and
Uj = E U; Py - (A-3)
1
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The transition-probability matriz P contains the transition probabilities
{pi;}. P is called a stochastic matriz because each p;; > 0 and each row sums
to unity. Each element of the state-probability vector u(n) = {u;(n)} is the
probability of being in state x; at time n. Letting u be a row vector, the one-

step transition from u(0) to u(1) can be represented by the equation
u(l) = u(O)P ,

where u(0) contains the initial state probabilities. The state probability vector
after n steps is

u(n) = u(0)P" .
For chains that satisfy the theorem above, we can define

U = lim u(0)P" .

n —0o0

U is the steady-state, or equilibrium vector of the Markov chain. Rewriting (A-3)
shows explicitly that U is an eigenvector of P, with eigenvalue 1:

U=UUP
This relationship will be frequently used below.

To show that the statics algorithm is a Markov chain with Gibbs equilibrium
probabilities, I shall first specify the structure of the transition-probability matrix
P. It will then be shown that P is both irreducible and aperiodic, after which it
will be proven that the steady-state distribution is Gibbs.

The transition-probability matrix

The statics estimation algorithm sequentially ‘‘visits” each parameter X, (a
shot or receiver static) and changes the parameter’s value by choosing a random
number from the probability distribution in equation (2). Only N distinct values
for each parameter are allowed (this limitation is just an upper and lower bound,
sometimes called a “‘shift limit”’). One iteration is completed after each parame-

ter has undergone a (possible) transition.

The transition-probability matrix P(m ) directs each change in the value of
X,, - Because there are M parameters that can each assume any of N values,
there are NM possible states of the system, and P(m ) is an NM by NM matrix.
Each row contains only N non-zero elements, because only N new states are
directly accessible from any given state. There are M distinct transition-

probability matrices P(1),---,P(M) for each of the M parameters,
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respectively. The matrix of transition probabilities that directs the changes from

one complete iteration to another is given by the product of the M matrices:
P =P1LHP2):  -PM). (A-4)

To show that the Gibbs distribution {II, } in equation (3) is the equilibrium vec-
tor for P, it will first be shown that P represents an irreducible and aperiodic
Markov chain. It will then be shown that {Hj } is an eigenvector with eigenvalue
1 for each P(m ) and thus also for P. Using the theorem stated above, we can
then conclude that the steady state of the Markov chain is the Gibbs distribution
of equation (3).

Irreducibility

A transition-probability matrix is irreducible if every state can be reached
from every other state with some positive probability over some arbitrary time.
A Markov chain must be irreducible if it is to have an equilibrium distribution;
otherwise the system may fall into a state from which it can not enter some other

states, and the system can no longer be independent of its initial configuration.

A set of states in which all members of the set are reachable (over time and
with positive probability) from all other members of the set is called an ergodic
class. Following the argument used by Fosdick (1963) for a two-dimensional
(Ising) lattice, I now show that P is irreducible by showing that all possible states

belong to the same ergodic class.

For each transition of X, , only N possible values are allowed. This transi-
tion produces one of N new (or repeated) states. Prior to the transition of X, ,
NM-1 different configurations of the other M — 1 parameters are possible. When
X,, changes, the other M — 1 parameters remain constant, and the new state is
one of the N possible states that contain the pre-existing configuration of the
other M — 1 parameters. These N states are all accessible to each other via the
transition matrix P(m ), but they are inaccessible from any other state using this
transition matrix. Thus each P(m ) partitions the NM states into NM -1 ergodic

classes, and each of these ergodic classes is a disjoint set of N states.

Now suppose that we are interested in the transition of X,, followed by the
transition of X,, ,;. Both P(m) and P(m +1) partition the states into NM -1
ergodic classes. Each ergodic class in P(m ) is different from each ergodic class in
P(m +1), but each state is contained in an ergodic class defined by both

matrices. For example, {x;, X5, - - -, Xy } may be the states of an ergodic class
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in P(m ). P(m+1) defines N ergodic classes (among others) that each contain
one of these N states:

{xla XN+10 T 7 XQN}
{x2, XoN 410~ vst}
{xn, XN2p1r T T XN N }e

When the product P(m ) P(m +1) is taken, each of these IV ergodic classes are
linked via the class {x;, x,, - - -, Xy} in P(m ); thus P(m ) P(m +1) partitions
the NM states into NM 2 ergodic classes. By induction, we see that the product
(A-4) links all states into a single ergodic class of NM states. Thus, because
every state can be reached from every other state, P is an irreducible transition-

probability matrix.

Aperiodicity

A state x; is periodic if its probability of recurrence, p,-,-("), is non-zero only
for some n > 1 and an integral multiple of n. Otherwise, the state is aperiodic.
All states of a system must be aperiodic if there is to be a limiting equilibrium
distribution; otherwise the system will not exhibit a distribution of states that is
independent of time. To show that all NM states of the system under considera-

tion are aperiodic, I will demonstrate that p;;, = p,-i(l) is non-zero for every 1.

Each row of each P(m ) contains N, and only N, non-zero elements. One
of these elements is always on the diagonal, because there is always some positive
probability of retaining the current value of the m th parameter. For simplicity,
consider a two-parameter system with transition matrix Q = Q(1) Q(2). Expli-

citly stated, the matrix product is
k
and the diagonal element is

4% = sz ik (1) i (2) °

Because ¢; (1) > 0 and g;;(2) > 0, and all the other elements are non-negative,
then g; > 0. By induction, the same conclusion is true for the diagonal ele-

ments of the transition matrix for an M -parameter system. Thus, because each
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diagonal element of P is positive, all NM states are aperiodic.

The steady state
I now explicitly construct P(m ) for the one-step (heat-bath) method. Unlike

the two-step (Metropolis) approach, the random changes of a parameter’s value
that this method performs do not depend on the parameter’s current value. The
method can be characterized as a Markov chain, however, because the current
values of the neighboring parameters (those shot and receiver statics within a
cablelength) determine the conditional probability distribution for any particular
parameter.

The transition probabilities that govern the m th parameter are given by

CEG)T)
> el E(x;)/T) :
Pij (m) = { Jsed(m)
(A-5)

0 otherwise
where A;(m ) is the set of N indices 7 such that x; = x; everywhere except
(possibly) at X,,, . It will be shown that

I, = 3 I pij(m) , (A-6)

t€A
where I1; is given by the Gibbs probability distribution of equation (3) and
A ={1,2,- -, NM}. This relationship will establish that {I1,; } is an eigen-
vector with eigenvalue 1 for each P(m ).
Equation (A-5) says that, for a given 1, p;; is non-zero only if 57 € A;(m ).
Likewise, for a given 7, p;j is non-zero only if ¢ € A (m ). Thus we may write
> i pij(m) = 3 I pjj(m) .
€A €A, (m)

Substituting equation (3) for I1; and equation (A-5) for p;; in the right-hand side

above, we obtain

Y I py(m) = Z exp{-E (x;)/ T} exp{-E (x;)/T }
e TS e[ B T) Y enlB )/ T)
I i CA JEA(m)
Reversing the order of the numerators and bringing the outside summation inside

then yields
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2: exp{-F (x; )/ T
Y I pyi(m) = exp{-E (x;)/T}  ich (m) P{-E (x;)/T}
t 1) =

icA 2oexp{-E(x;)/T} 3 exp{-E(x;)/T}

{EA JEA;(m)

Now note that when j € A;(m ), A;(m )= A;(m ). Thus the second term on
the right-hand side cancels to yield

5 Iy (m) = oGV
i'€A >, exp{-E(x;)/T}
tEA
which is equal to II;. Thus {Il; } is an eigenvector with eigenvalue 1 for P(m ).
Inspection of equation (A-4) shows readily that {II, } is also an eigenvector
with eigenvalue 1 for P, and that U; = II; satisfies equations (A-2) and (A-3) of
the limit theorem. Thus, because P is irreducible and aperiodic, {Hj} is the

steady-state distribution of the Markov chain.
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Residual statics estimation by simulated
annealing: Another view

Daniel H. Rothman

INTRODUCTION

This paper proposes an attractive alternative to the earlier adaptation of simulated
annealing for residual statics estimation (Rothman, 1984; Rothman, 1985). Simulated
annealing is still used to solve a nonlinear optimization problem, but residual statics esti-
mation is addressed now via traveltime decomposition, d la the classic approach of
Taner et al. (1974) and Wiggins et al. (1976). The new method is potentially faster, and

it can also handle residual normal moveout without undue complications.

MERGING LINEAR AND NONLINEAR METHODS

In the paper by Wiggins et al. (1976), residual statics estimation is explicitly posed
as a linear inverse problem. Given observed time deviations t;; for traces associated

with the 7 th shot and j th receiver, Wiggins et al. used least-squares techniques to solve

the system
tiy == 8 +r; (1)

for the surface-consistent time delays s; and r; assoclated with the 7 th shot and jth
receiver, respectively. (I’ve left out residual normal moveout and the so-called structure

term; residual normal moveout will be considered at the end of the paper).

As discussed in Rothman (1984), statics present an inherently nonlinear inverse
problem. It is the specification of the ¢;;, however, that allows this problem to be linear-
ized. When the observations {ti]-} are accurate, linearization is not only valid, but it is
also quite efficient. If the ¢; contain gross errors, however, we’re no longer on firm

ground—this results in the “‘cycle-skipping” problem.

My earlier papers (Rothman, 1984; Rothman, 1985) approached the cycle-skipping
problem by treating statics as a fully nonlinear problem, in which it is necessary to glo-
bally minimize a functional that contains innumerable local minima. This method

presupposes nothing about the optimal set of statics: there is no starting guess, nothing
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akin to the {t,-j} are ever picked, and the final solution can be wildly different from the
input. The key issue is that neither the {tij} nor the maxima of any other crosscorrela-
tion functions play an explicit role in obtaining the solution; the algorithm simply tries

to find the optimal statics, wherever they may be.

Because there are an an enormous number of possible solutions, simulated anneal-
ing is employed for optimization. Given the enormity of the solution space, however, it
is no surprise that the solution is obtained only after thousands of iterations. But we

must question whether this much effort is really necessary.

This effort is necessary if, a priori, we have no inkling of the optimal solution. In
some cases, however, reflection events might be clearly apparent, albeit considerably
discontinuous due to statics. Perhaps we can somehow use this partial clarity as an
indication of the final stack, and hopefully narrow down the number of candidate solu-
tions. Ideally, we would like to combine the efficiency of traveltime decomposition
methods with the generality of simulated annealing. The new method, proposed below,

is one such combination of linear and nonlinear techniques.

NONLINEAR TRAVELTIME DECOMPOSITION

When cycle-skipping is not a problem, the primary advantage of solving for statics
by decomposing the observed traveltimes in equation (1) is that the size of the statics
problem is greatly reduced. One begins by computing crosscorrelation functions for
every trace. Then, instead of continuing to work directly with the seismic data or even
the crosscorrelation functions themselves, one picks the peaks of the crosscorrelations;
the corresponding lags are the {¢;; }. Thus the size of the problem is twice reduced: first,
by going from seismic traces to much shorter crosscorrelation functions; and second, by
reducing the information in each crosscorrelation function to a single point, ti; . In con-
trast, the Monte Carlo method presented in my previous papers always uses the seismic
traces for each calculation in every iteration. No attempt is ever made to reduce the

data to a smaller size.

The method I propose here works primarily with crosscorrelation functions, instead

of the seismic traces. Thus we can expect considerable computational savings.

Let each data trace be given by dij(t), when indexing by the iz th shot and j th
receiver; or by H‘yh (t), when indexing by midpoint y and offset h. The kth common-

midpoint stacked trace is then given by

ue(t) = Ehld_yh(t)

SEP-42
266



Rothman Another view

I also define partially stacked traces
wlt) = w(t)-dj(t), k= (G +7)2.

The trace y,fj(t) is just the usual common-midpoint stacked trace minus one of the

member traces in the CMP gather.

Step 1

Compute crosscorrelation functions R;; (7) by crosscorrelating d;; (¢) against y,fj(t );

i.e., crosscorrelate each trace against a partially stacked trace:
R (r) = Ydi; (¢ + 1) y(t) .
t

This results in one crosscorrelation function for each selsmic trace.

Step 2

Transform the crosscorrelation functions to probability distributions, as described
in Rothman (1985):

exp{R;; (t;;)/ T }
tE exp{f;; (t;;)/ T}

1

Pii(t;) = (2)

P;; (t;;) is the probability that ¢;; is the correct time delay for this trace. The scalar T

regulates the spikiness of the distribution; T is chosen, as always, by experimentation.

Step 3
This is where the work gets done. We write
Pij(ti;) =~ Pi(si +rj) . (3)
Assume that the {P;; } are all mutually independent. (This is clearly not true, but it

will suffice as an approximation.) Let s = {s; } and r = {r; }. Then we seck the s and

r that maximize the product of the probabilities in equation (3):

max J[ Py(s; +7r;) -

s,r U

Equivalently, we can pose the minimization problem

min {—-E log[ Pij (Si + Tj) ]} . (4)

s, r 2]
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Because the function being minimized in equation (4) can be expected to contain
innumerable local minima, simulated annealing is employed to perform global optimiza-
tion. Each s; and r; is initially equated to zero. Then, for each s;, we calculate the
function

$s(s:) = 3 log[Pij(si +1;)] (5)
<j>;
where <(j >, represents an index j that is paired with the given ¢; that is, the sum is
taken over all receivers j that are turned on for shot +. We then form the probability
distribution
¢s, (Si ) i

Qs (si) = m . (6)

Random guesses for s; are drawn from this distribution; this guess is then the new value
for s;. In a similar manner, equations (5) and (6) are then set up for each r;, and the
{r;} are also updated. This sequence is then repeated until the minimization in equa-
tion (3) is achieved. Hopefully, T' need only be chosen in the calculation of equation (2).

It is possible that T may need to be gradually lowered to achieve the minimization.

Step 4

Restack the data, using the new estimates of the statics. Then go back to step one
and repeat the whole cycle again. The procedure terminates when two consecutive itera-

tions through steps 1 to 4 produce nearly equal results.

SIMULTANEOUS ESTIMATION OF VELOCITIES AND STATICS

The traveltime model given by equation (1) is predicated on the assumption that
normal moveout has been accurately removed. Since stacking velocities are difficult to
estimate before statics have been corrected, most traveltime models include residual nor-
mal moveout (RNMO). To include RNMO in equation (1), one writes

t; = o8 +r; +my 1‘1-]-2 R (7)

where m; is the residual normal-moveout coefficient for the kth common-midpoint
gather and z;; is the distance between shot ¢ and receiver j. In reality, RNMO is
different at every time; for simplicity, however, m; represents the average RNMO within

the entire computation window.
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To solve the statics problem with RNMO included, we just need to incorporate the
additional set of parameters m = {my }. Steps 1 and 2 are the same as before. In Step

3, we now want to solve the optimization problem

s,r,m

min {—E log[ Pij (S,’ -+ Ty + my 511“2) ]} ’ (8)

where k is of course given by (¢47)/2. As before, we calculate
¢ (s;) = Y log[Py(s; +r; +mpzf)], (9a)
<Jjk >;
where the sum is now taken over all receivers 7 and midpoints k associated with shot 7.
¢,J(r]-) is computed similarly. We also need to compute
Om, (M) = Y log[ Pij(s; +r; +my )], (9b)
<ij >
where my, is allowed to vary over a predetermined range, and the sum is taken over all
i,j pairs associated with a given midpoint k. The estimates of s;, r;, and my are
drawn from the probability distributions @ . When the minimization in (8) is achieved,

the data are then restacked as in Step 4. This time, however, RNMO corrections are

also made prior to stacking.

The next level of complexity would be to compute RNMO as a function of time,
thereby trying to estimate not only statics, but also corrections to the initial stacking

velocities. Time dependence can be included in equation (7) by writing
ot 2
Ly == s +r; +mya, (10)

where £;;; is the approximate time deviation for the 7,7 trace within time window [.
Time windows could be placed around key reflectors, or they could be short overlapping

segments. The optimization problem is now

s,r,m 'L]l

min {—E lOg[ Pijl (Si + r; -+ mp xijQ) ]} ] (11)

where the number of probability distributions P;; is given by the number of traces

times the number of computation windows. The calculations of the functions ¢ are now

¢s.(si) = Y3 log[Piy(si +r; +my i) (122)
< k>,
6. (rj) = X log[Piyls; +r; +maf)] (12b)
<ikl >,
and
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2
Gy (i) = Y log[ Py (s; +r; +mpaif)] . (12c)
<if >y
In equation (12a), the sum is taken over over all receivers j, midpoints &k, and time win-
dows [ for s; fixed; in (12h), the sum is over all shots 7, midpoints, and windows for r;
fixed; and in (12c) the sum is taken over all ¢,5 pairs, with midpoint and time window

fixed. Estimates of the parameters are drawn from the probability distributions @) .

In many cases, RNMO is unlikely to vary rapidly in space. In practice, the {imy }

could be smoothed after each iteration, or constraints could be incorporated into the

Qm,‘, (mkl )

DISCUSSION

Unlike my previous applications of simulated annealing, the method proposed here
does not restack the data each time a parameter is updated. Instead, the crosscorrela-
tion functions R;;(7) are assumed to be reasonably representative of reality, and we sim-
ply try to find the surface-consistent solution that best matches the crosscorrelations.
We do not restrict ourselves to the peaks of the crosscorrelations, however, and thus

hope to obtain a solution that is free of cycle-skips.

Importantly, estimates of RNMO are easily incorporated into this technique. This
might make the simultaneous estimation of residual statics and stacking velocities a

practical reality.

ACKNOWLEDGMENT

I thank Francis Muir for some helpful remarks concerning the manuscript.

REFERENCES

Rothman, D.H., 1984, Nonlinear inversion, simulated annealing, and residual statics esti-
mation: Stanford Exploration Project Rep. 41, 297-325.

Rothman, D.H., 1985, Automatic estimation of very large residual statics: Stanford
Exploration Project Rep. 42 (this report).

Taner, M.T., Koehler, F., and Alhilali, K.A., 1974, Estimation and correction of near-
surface time anomalies: Geophysics, 39, 441-463.

Wiggins, R., Larner, K., and Wisecup, D., 1976, Residual statics analysis as a general
linear inverse problem: Geophysics, 41, 922-938.

SEP-42
270



