Surface-consistent residual statics estimation
by stack-power maximization®

Joshua Ronen and Jon Claerbout

ABSTRACT

Application of incorrect static shifts will decrease the power of the CDP-stack.
Conversely, static shifts can be estimated by maximizing the stack power. We tried it
and it worked well enough that we recommend it in routine practice for data with low

signal-to-noise ratio.

Likewise, stack power was maximized by adjustment of surface-consistent phase

correction.

INTRODUCTION

Review of travel-time picking methods

Near-surface lateral velocity variations and topographical changes cause time
anomalies that can be approximated as surface-consistent static time shifts. This
approximation has obvious limitations; nevertheless, it is adequate often enough that
time anomalies are routinely corrected by static time shifts. Methods of automatic esti-
mation of the near-surface anomalies, based on static time shifts, have been developed
(Hileman et al., 1968; Disher and Naquin, 1969; Taner et al., 1974; Wiggins et al. 1976;
Kirchheimer, 1983). These methods fit a surface-consistent model to time anomalies of a

particular event on various traces:

At; = S(s;)+ Gg) + Y(w) + R (y:) X2 . (1)

* Presented at the 54th SEG Meeting in Atlanta, Georgia, December 1984. Accepted for publication; will
appear in the golden anniversary issue of Geophysics, December 85.
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At; is the time anomaly for trace ¢, having the shot station s;, geophone station 9,
midpoint station y; = (s;+g¢;)/2, and shot-receiver offset h; = (s;-g¢;)/2. S(z) and
G (z) are shot and geophone static corrections as a function of station z, Y (z) is a

structure term, and R (z ) is a residual NMO correction.

Travel-time-picking methods obtain the time anomalies by picking crosscorrelations
maxima: the maximum of a crosscorrelation is the most likely relative time shift between
two similar traces (Foster and Guinzy, 1967). Once the time anomalies, A¢;, are picked,
the functions S(z), G(z), Y(z) and R (z) are found by solving an over-determined,

under-constrained system of equations.

Picking peaks of crosscorrelations is a non-linear operation. Non-linear operations
are susceptible to failure in the presence of ambiguities or noise. This led us to
hypothesize that static shifts should be determined so that the power in the final stack is
maximized. Our implementation of this hypothesis does not avoid picking crosscorrela-

tions but it incorporates the picking at a later stage as part of the model estimation.

Model estimation by optimization

Consider the estimation of surface-consistent static corrections as an optimization
problem: the stacked section is a function of the statics model; if we change the statics,
the CDP stack will be different. To find the best static model we can, in principle, try
all possible models and choose the one that yields the best stack.

Model estimation by direct optimization has been used in various inversion prob-
lems: maximizing semblance in velocity analysis (Koehler and Taner, 1967; Neidell and
Taner, 1971; Toldi, 1985), maximizing parsimony in missing data (Thorson, 1984) and
extremizing entropy or maximizing likelihood in deconvolution (Burg, 1972; Wiggins,
1978; Chi et al., 1983). We suggest estimation of surface-consistent statics by maximiza-

tion the sum of squares (power) of the stacked section.

The power of the stacked section is a good measure of quality because if all the
traces are the same except for static time shifts, then the stack is most powerful when
all the traces are aligned with no relative shift. (The proof is by using Cauchy-Schwartz
inequality.)

Travel-time-picking methods for statics use indirect optimization when fitting the
travel times to a surface-consistent model (usually by least squares). The optimization
we suggest 1s different: it is based directly on the seismic data and not on picked travel

times.
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Super-trace crosscorrelation

Unstacked data is a function of midpoint y, offset &, and time ¢. In the volume of
this unstacked data, a static time shift of a particular shot is a uniform shift of the
plane containing that shot profile (Figure 1). Common midpoint stacking is summing
along the offset direction. The power in the resulting stack is a function of the static
shifts of every shot and every geophone. For a single shot station, one could try every
shift, stack and sum the squares of the stack; then one could choose the shift that gave
the highest power. What we actually do is equivalent but more efficient: a super trace
built from all the traces of the shot profile in sequence (trace F in Figure 1) is
crosscorrelated with another super trace of all the traces in the relevant part of the stack
in sequence without the contribution of that shot (trace G' in Figure 1). We then pick
the maximum of that crosscorrelation. Zero segments are included between traces so
that end effects are avoided. The equivalence of maximizing the power of the sum and
maximizing a crosscorrelation is shown by:

Power(At) = X [ F(t-at)+ G (1) @)

¢

= % [F2(t—At) + G2(t)] + 23 F (t-At)G(¢)

= Constant + 2XCrosscorrelation .
To estimate a shot-consistent static shift, the shot profile is crosscorrelated with the

relevant part of the stack and the maximum is picked. The stack is corrected accord-

ingly. This procedure is repeated in a cyclical coordinate ascent:
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FIG. 1. Super trace crosscorrelation: The plane containing the shot profile in the
unstacked data volume is moving up or down according to the static shift of the shot.
The CDP stack is changing as a function of that static shift. Maximizing the power of
the CDP stack as a function of that particular shot static is equivalent to maximizing
the crosscorrelation between two super traces built from the shot profile (trace F') and
the relevant part of the CDP stack (trace G'). The procedure is repeated for every shot
and geophone. Convergence is usually achieved within 5 to 20 iterations.
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Repeat {

For every shot and every geophone {
(1) Form the super traces
(2) Cross-correlate them
(3) Pick the maximum
(4) Correct the stack

}

(Optional) Constrain the statics

} until convergence

The optional constraining routine removes undesired features from the model: sub-
tracting a regression line to remove a linear trend, and occasionally a running median to
extract glitches. (A running median is a non-linear filter in which the output at each

z! -z l<Az ).

point, out (z ), is a median of the input, in (z’ ), over some range

Modified objective function

Our objective function has been so far the power in the CDP stack. A good way to

incorporate constraints is to modify the objective function:

MAX { Power (m,d) — F (m) }

m
where d is the data, m is the model. F (m) is a penalty function, which is easily incor-
porated.

The simplest F' is parabolic,
F(m) =mT Cm,

where C' is a scalar. This corresponds to damping in least-squares. F can be designed
to softly constrain the shot statics so that they resemble the receiver statics and to

reject undesired features of the model.

DATA EXAMPLES

The method was tested on several data sets; two of them, are shown here. The
first example includes a slowly varying, near-surface velocity anomaly (Figures 2-5). The
reflectors of the stacked section without static correction have gaps at 3.7 seconds, and

sags at 0.5, 1.4, 2.0 and 2.6 seconds under midpoint 100, (Figure 2). The gaps and sags
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FIG. 2. Example 1: CDP stack without static correction. The sags and gaps in the
reflectors are due to a large near-surface, low-velocity anomaly.

are repaired when the static correction are made (Figure 3). The statics program con-
verged to a model that shows a low velocity anomaly in the center (Figure 4). The
high-spatial-frequency statics converged within a few iterations, the low-frequency statics
took about 20 iterations to converge (Figure 5). The faster convergence of the high fre-
quencies is similar to what Wiggins et al. (1976) found using a travel-time-picking
method. In this example, the long-wavelength statics could be independently estimated

from velocity analysis (Toldi, 1984) with excellent agreement.
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CDP stack with static correction
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FIG. 3. Example 1: CDP stack with static correction. The statics were estimated on the
reflector at 3.5 to 4 seconds.

The data of the second example have a poor signal-to-noise ratio: lightning bolts
and air waves are much stronger than the reflections. The noise and near surface velo-
city anomalies are the reasons why the uncorrected stack is uninterpretable (Figure 6).
The static correction improved the upper 2 seconds of the left part of the CDP stack
(Figures 7-9). The time window for the statics estimation was 0.8 to 1.4 seconds. Runs
with deeper time windows were unsuccessful, possibly because of low penetration of the

reflector that produced the multiples on the left side of Figure 7.
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FIG. 4. Example 1: Shot and receiver statics. The similarity is expected in Vibroseis *
data.

SEP-42
210



Cable Length

<

midpoint

»

Stack-Power Maximization

o o
..9‘ "8
w L O
& B o o
Y] i
> >
w — w -
= L = L)
(= ') o O
T w I vy
wn o w 0 4
T T 7 T ™0 v T LI | Y 0O
S 0 S-S 0 3 S 0 S-S 0
N

200
200

150
wwws.
150

\
!

hi

=

100

N o
o=
v

‘.z..ﬂm

Ol

! ":\ .I«

il

50
50

time (sec)

time (sec) time (sec)

FIG. 5. Example 1: The fast convergence of short-wavelength statics. (a) Stack after

one iteration. (b) Statics after one iteration: the short-wavelength statics already con-
verged. (c) and (d) After three iterations. (e) and (f) After twenty-two iterations.
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FIG. 6. Example 2: CDP stack without static correction.
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FIG. 7. Example 2: CDP stack with static correction.
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FIG. 8. Example 2: Stack without (above) and with (below) statics correction. Upper 2
seconds of left part of Figures 6 and 7.
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FIG. 9. Example 2: CDP gather before (left) and after (right) static correction.

DISCUSSION
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Comparison to travel-time-picking methods

Travel-time-picking methods usually generate pilot traces by shifting and stacking
neighboring traces. Single traces are then crosscorrelated to the pilot traces. Crosscorre-
lating single traces with pilot traces is more reliable than crosscorrelating single traces
with single traces because of the improvement in signal-to-noise ratio in the pilot traces.
Our method carefully generates the CDP stack which is the final product, but is also
used as a pool of pilot traces. The shifts that we use to generate the pilot traces become
the static model; we base the statics estimation directly on the unstacked data and not
on previously picked travel times. The unreliable picking is eliminated as a separate

step.

The cost of the stack-power maximization method may be higher than a travel-
time-picking method if many iterations are needed (if the model contains slowly varying
anomalies). The cost may be lower if convergence is achieved within few iterations. In
any case it is more reliable in the presence of noise. When the signal-to-noise ratio is

high, travel-time-picking should be used if it is more efficient.

The limitations of static time shifts

In making the static time shift approximation we assume vertical rays in the near
surface, and that the near surface affects only the travel time. In general, the anomalies
have some finite depth, and they change wavelets as well as travel times. Generalization
of the static model can be done in the directions of velocity analysis and of deconvolu-

tion.

Statics and velocity analysis

Statics estimation is effectively a velocity analysis of the near surface. Ideally, stat-
ics and velocity analysis would be done together. In practice, however, the near surface
anomalies are analyzed by static shifts, and velocities are analyzed by NMO. Statics
cannot be estimated before NMO is removed, but sometimes velocity cannot be accu-
rately estimated before statics are corrected. Some work has to be done, to either com-
bine the two processes or at least make the static estimation less sensitive to inaccuracies
in NMO velocities. Our method is sensitive to errors in NMO velocities, but it is fast
enough to be used iteratively with velocity analysis: run the statics for some possible
NMO velocities and choose the velocity that gives the best result, analyze the velocity

again and if necessary, estimate the statics again, with the improved velocity model.
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Velocity analysis by NMO cannot resolve features much smaller than the cable
length. Statics estimation is unreliable for anomalies much larger than the cable length.
There is an area of overlap: anomalies that can be detected by either statics or velocity

analysis. The data set of Figures 2-5 has one of these overlap cases.

The static time-shifts approximation is more adequate for deep reflectors than for
the shallow ones. Dynamic correction (time- and offset-variable, or downward continua-
tion) is necessary for the shallow reflectors. Also, the sensitivity to pre-statics velocity
analysis is smaller for deep reflectors. The correction can be estimated statically on a

deep reflector and applied dynamically to the whole section.

Statics and deconvolution

Static shifts are phase corrections that should, in principle, be part of deconvolu-
tion. Our method does not combine static shifts with deconvolution, but it is possible to
combine the two in an iterative processing sequence, similar to the sequence of statics-
velocity analysis. With this iterative sequence, some cases will require the statics pro-
gram be run many times. It substantiates the importance of the method being fast.
Restartability is also important because results of previous runs can then be used as

starting points.

Deconvolution before statics might be helpful in reducing ringing and easing the
cycle skips problem but it should be done with a surface-consistent scheme for the fol-
lowing reason. Most deconvolution techniques assume a minimum-phase wavelet, but
they work anyway even for Vibroseis® which does not have a minimum-phase wavelet
(Gibson and Larner, 1984). The minimum phase of the deconvolution operator is sub-
tracted from the non-minimum phase of the wavelet; the residual phase should be
corrected separately. If the deconvolution is not surface consistent, we cannot correct
that residual phase by surface-consistent statics correction (or by any other surface-

consistent phase correction).

Phase deconvolution without phase unwrapping

The estimation and correction of static shifts by stack optimization can be general-
ized to phase deconvolution (Muir, pers. comm.): the goal is to find the surface-
consistent phase that will maximize the stack power. Solving for the phase function

®(w) in all frequencies is frustrated by the overwhelming number of parameters: the

* Conoco Inc.

SEP-42
217



Ronen and Claerbout

number of frequencies times the number of shots and receivers. Instead, the phase can

be decomposed to components by the series:

Bp) = X 8, (0p) = T 84 (p) sgn w|w

n

" (3)

w is the frequency and p is a surface consistent variable, i.e. shot station. sgn w is the

sign function:

1 w>0
sgn w = 0 w=20
-1 w <0

®(w)

®(w) is an odd function because the operator el is Hermitian.

We now want to find the phase coefficients ¢o(p ), #1(p ) and maybe ¢o(p ) that will
maximize the stack power. It can be done similarly to the estimation of the statics by

stack power maximization: Phase unwrapping is not required.

The most important component of the phase correction in equation (3) is the static

shift, ¢1(p Jw = Atw. The n =0 term is the bulk-phase correction:
et P s ¢o + 1 sin ¢y sgn w
which inverse-Fourier transforms to

cosgy + 1 sin ¢g sgn w C cosgd(t) + singy H .

H is the Hilbert transform operator. The other terms of the series of equation (2) are

dispersive and more complicated than the first two. The n =2 term,
Fz(w) — wWPhy sgn w ’

Fourier-transforms to

9 a . 2 [24
fa(t)= 252 \/-1_—2 cos z2dz | + 22X \/Z—2 sin z%dz |
: Vo (V27 Vo [V2 ¥

where a = t/(2\/¢_2) Impulse responses of the first three terms are shown in Figure
(10).

Applying phase deconvolution by stack optimization, in the one case we tried, gave
disappointing results: the power of the stack was improved compared to a stack pro-
duced with only static correction, but the lateral continuity of the stack degraded and

the near surface model did not make any sense (Figures 11-12).
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-10 -5 0 5 10

FIG. 10. Impulse responses of the first three phase terms: (a) The bulk phase
S(w)=sgn w @y with pg=m/4 (b) The static shift d(w)=wAt with At =2.5 seconds. (c)
The square phase ®(w)=sgn w ¢w?® with ¢o—1 seconds?.
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FIG. 11. Stack after unconstrained phase deconvolution. Comparing to static correction

(Figure 5), the power is higher but the lateral continuity is lower.

Power maximization and optimization

sensitive to NMO velocity than stack power.

Our failure to make the phase correction by stack-power maximization shows that

stack power does not equal stack quality. We chose to maximize stack power in this ini-
tial study because a simple sum of squares is readily understood and economically com-

puted. Other objective functions might be more sensitive to lateral continuity and less

stack: the stack can be filtered over midpoint (to increase the sensitivity to lateral con-

tinuity) or the data can be filtered or dip-filtered over offset (to decrease the sensitivity

to NMO).

Null space

ics and no time shifts will result.

Energy can be maximized in a filtered

The static model that maximizes the stack power cannot be unique: we can always

add a constant to all the shot statics and subtract that constant from the geophone stat-

space. Analysis of the null space for travel-time picking methods was given by Taner et

al. (1974) and by Wiggins et al. (1976).
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FIG. 12. The phase corrections: (a) Shot static shifts. (b) Receiver static shifts. (c)
Shot bulk phase. (d) Receiver bulk phase.
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In the context of stack-power optimization, the null space is defined as any com-
ponent of the model that does not change the power of the stack. The null space con-
tains, in addition to the models that do not cause any time shifts, all models that cause

shifts of CDP gathers but do not cause relative shifts within CDP gathers. For example
the model

S(z)=G(z)=4a Xz +b,
will cause the shifts
At = S(s;) + G(g;)
=aXs +b +aXg; +b
= a X(s; +9g;)+2b
= a X2y; +2b .

The time shifts are uniform within every CDP gather (because y; = (s; +g; )/2); there-

fore they cannot change the power of the stack, although they may be important in

interpretation.

Slowly varying corrections, which change little within a cable’s length, hardly affect
the stack power. The power-maximization method, therefore, has the usual problem

with the long-wavelength corrections, they remain to be determined by velocity analysis.

Local extrema

The direct ascent maximization converges to a local maximum which depends on
the starting point. If the starting point is far from the global maximum, the process
may end in a local maximum. Dan Rothman (1984) developed a method of stack-power
maximization by stochastic relaxation that takes more computation time but has higher
probability of finding the global maximum. An alternative approach is to compose a
model from results of previous iterations that produced local maxima. It is also possible

to run the program from randomly chosen starting points.

CONCLUSIONS

We suggested a new approach to the statics problem: estimating the statics by
maximizing the power in the CDP stack. The method we presented is capable of

estimating statics in the presence of a low signal-to-noise ratio by simultaneous model
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fitting and travel-time picking.
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