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INTRODUCTION

Conjugate gradient methods are useful for solving large, generally sparse,
minimization problems. For symmetric, positive-definite linear systems conjugate
gradients is the optimal iterative technique when measured by a certain qua-
dratic norm. Furthermore, as with Golub’s QR method, conjugate gradients can
solve least squares problems without squaring the condition number by forming
normal equations.

One, now classic, least squares application in exploration geophysics is the
residual statics problem. The paper of Wiggins, Larner and Wisecup (1977)
clearly analyzes the algebraic structure of the problem and an iterative method
(Gauss-Seidel) of solving the associated normal equations. In this report we will
introduce two other iterative statics solution methods that are grounded in con-
jugate gradients. The first will simply apply conjugate gradients to solve the
same normal equation system that had been solved by Wiggins, et al. by
Gauss-Seidel. The second will not form the normal equations but instead will
work directly with the original system from which the normal equations had
been derived.

Our initial tests, surprisingly, do not show a striking improvement in qual-
ity or speed of convergence when conjugate gradients is applied to the problem.
Using singular value decomposition on a model of modest size, we find that the
diagonal preconditioning we employ in the conjugate gradient algorithm makes
the eigenvalues of the normal equations very well behaved over about 80 percent
of the spectrum. Since the Gauss-Seidel method is independent of diagonal scal-

ing, this gives a plausible explanation for our results.

CLASSICAL FORMULAS
Following Wiggins, et al., let 2 =col(s,r, g, m). Let t; be the estimated

static shift for shot ¢ and receiver 7. Then the basic residual statics formula

i = s oy o+ og o+ omphf ) (1)
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where k is the CDP number and h;; the source-receiver offset, describes a
matrix-vector product Az for producing time shifts from the statics model vector
z. To apply conjugate gradients to residual statics we need to compute
matrix-vector products AT ¢ as well as Az. It is straightforward to verify that
this is given by:

8 = Y b

t fized
T = PINY
7 fized
2
9k = Y b 2)
k fized
my = ¥ ik}
k fized
If we store i,7,k,h; in a table then the code for y = y + Az is

simply:

do 10 itrace=1,ntrace

i=table(1,itrace)

j=table(2,itrace)

k=table(3,itrace)

hij=table(4,itrace)

y(itrace)=y(itrace)+s(i)+r(j)+g(k)+m(k)*hij**2
10 continue

and the code for z = z + ATy is:

do 20 itrace==1,ntrace
i=table(1,itrace)
j=table(2,itrace)
k=table(3,itrace)
hij=table(4,itrace)
s(i)=s(i)-+y(itrace)
r(j)=r(j)+y(itrace)
g(k)=g(k)+y(itrace)
m(k)=m(k)-+y(itrace)*hij**2
20  continue

For the normal equations AT Az needs to be formed. Using the above we

may write this as

8 = Y os o+ i+ g+ mphf
i fized
7 = Y s oo o+ oge + omphf
7 fized
A — . h:2 (3)
9k - E 8,'-}-7‘] + 9 + my ij
k fized
my = ¥ ks + vy + g+ mphi)
k fized
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with code fragment

call zero(snew,nshot)
call zero(rnew,nrecv)
call zero(gnew,ncdp)
call zero(mnew,ncdp)

do 30 itrace=1,ntrace
i=table(1,itrace)
j=table(2,itrace)
k=table(3,itrace)
hij=table(4,itrace)
temp=s(i)+r(j)+g(k)+m(k)*hij**2
snew(i)=snew(i)+temp
rnew(j)=rnew(j)+temp
gnew(k)=gnew(k)+temp
mnew(k)=mnew(k)+temp*hij**2
30 continue

Besides the Gauss-Seidel iterative method, used by Wiggins et al, we will
also work with the Jacobi method. To describe the Jacobi iteration, write
ATA as D + Q with D = diag(ATA) and write AT¢; as ¢. Then the
Jacobi iteration is

Dz"*t! = ¢ - Qz" (4)

with 2® = 0. Since ATA depends only on the recording geometry, it Is
appropriate to precompute D! ie. the reciprocal of the diagonal elements.

Then for the residual statics equations we may write the Jacobi iteration as

8 = ds; 7 [ es; = 2 ri + g + mphf ]

i fized
fj = drj_l[ CTj — E 83 + gk + mkh,-]? ]

J fized (5)
gk = dgp ' [ egr ~ Y s+ r; + mph?

k fized
n = dm [ emy - Y s + vy 4+ og) |

k fized

The Gauss-Seidel method splits the above into four separate iterations with
the new § values being used to compute the new # values and so on. This
has the advantage over the Jacobi iteration of using the most up-to-date infor-
mation at each stage but the disadvantage of making the results depend on the
order in which the variables are scanned. In matrix notation write AT A as
D + L + LT, where L is lower triangular; the Gauss-Seidel iteration is
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(D + L)X""!' —= ¢ -LTx" . (6)

For the purpose of applying the conjugate gradient method to the residual
statics problem, the Jacobi method has one more decided advantage over the
Gauss-Seidel method. The former, because D is symmetric and positive-definite,
will preserve the key orthogonality properties of the conjugate gradient search
directions. The latter does not and so the c-g optimality properties, based on
orthogonality, are no longer valid.

Golub and Van Loan (1983) show that a symmetrized version of the
Gauss-Seidel method (SSOR), wherein the order in which the variables are
scanned is reversed from iteration, to iteration does produce a symmetric,
positive-definite splitting and therefore may be accelerated by the same methods
described below. We postpone discussion of this promising alternative to a
future report.

ACCELERATED JACOBI

One conjugate gradient algorithm that directly compares with Gauss-Seidel
incorporates the same diagonal matrix that appears in the Jacobi method. This

algorithm applies conjugate gradients to the least-squares normal equations
ATAz = ATt (7)

where z is as above and ¢ is a vector of time shifts #; as determined by
trace crosscorrelation. Schematically the algorithm is as follows (adapted, with
apologies, from Golub and Van Loan, 1983):

x =0;r =ATt;p =0;,p=0
for k ==1,... niter

{

z =Dy
“7=ZTT
B=~p
p=2z+pp
w=ATAp
a=/pTw
T =1z +oap
r =—=r —-oqw
p=1/y

if r = O then break

}

Because this algorithm specifically computes AT A times a vector we use it for

illustration only. In practice one should use an alternative formulation which
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needs only multiplications by A or AT but not by ATA. One such algo-
rithm is CGLS which take the form (adapted from Paige and Saunders, 1982):

r=0p=ATt;y=pTDp

for k =1,...,niter

s =Dy
g = As
a=/qTq
T =22 +ap
r=r -aq
s =ATy
B=n
y=sTDs
B=/8
p=s+Pp

if s =~ 0 then break;

}

r =Dy

We emphasize that both conjugate-gradient algorithms will produce the same
solution with exact arithmetic — the latter is preferred for its superior perfor-
mance in the presence of rounding errors. All our examples are computed in
double precision to remove the influence of such errors. As a further check
we’ve also computed the solutions using the even more robust algorithm LSQR
(Paige and Saunders, 1982). In all the examples we’ve run there has been no
difference between the accelerated Jacobi outputs and the LSQR results.

As an aside, the SSOR acceleration mentioned in the introduction replaces
D' with the new preconditioner (D + LY'D (D + LT)' which is imple-
mented by cascading a forward and backward sweep of Gauss-Seidel and throw-
ing out about half of the intermediate terms.

Our termination criterion for the iterations, both Gauss-Seidel and conjugate
gradient, was to stop when the FEuclidean norm of AT Az - AT¢ was reduced
to less than 10 of the norm of AT¢. This is an overly stringent require-
ment. Accuracy of a few percent should be more than sufficient to produce an

acceptable stack, the main goal of residual statics analysis.

SYNTHETICS

Our first synthetic is a small one with 4 shots and 6 traces per shot.
The trace spacing and the shot pullup are both 1, as is the offset to the near
trace. Figure 1 displays the g term as a function of iteration for Gauss-Seidel

and accelerated Jacobi respectively. We can see that the two methods converge

SEP-42
193



Conjugate gradient residual statics Biondi and Levin

to answers that differ in both shape and magnitude. The difference involves
two parts. The first is an endpoint contribution unresolvable by the residual
statics model. This is completely lumped into the g term by the Gauss-Seidel
iteration but split among all four terms by the accelerated Jacobi method. The
second difference, associated with the small kink at midpoint 5, is a “long-
wavelength” component of the solution that is poorly resolved by the residual
statics data. 'The conjugate gradient algorithm picked up this component after
11 iterations as the residual norm dropped from half a percent to 10™° in the
last two iterations. The Gauss-Seidel method reached our specified tenth of a
percent residual accuracy in only 8 iterations but the kink was pointing down
and another 50 iterations were needed to bring it into agreement.
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0 & 4 S 8 10

FIG. 1. The structure term of the solution for a small synthetic residual stat-
ics problem with 4 shots and 6 receivers; each curve is the result of one itera-
tion. The wupper plot displays the sequence produced by the Gauss-Seidel
method while the lower is from conjugate gradients. We can see some differ-
ences attributable to the different convergence of the long wave-length com-
ponents of the solution.
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Our next synthetic has 64 shots and 24 traces per shot in a split spread
geometry. The data were generated by adding random noise to a sinusoidal
function with a two cable-length wavelength — a modest long wavelength prob-
lem. The magnitude of the noise was adjusted to make the signal to noise
ratio about 10 to 1. In Figure 2 we show the shot statics converging to a
solution. ~ Both the Gauss-Seidel and conjugate gradient methods converged
rapidly to solutions differing mostly by an unresolvable D.C. bias. When we
changed the Gauss-Seidel order from ¢ —m —s—r to s—r—g—m, the
number of iterations needed to reach an accurate solution decreased to two, a

dramatic decrease to which we are unable to attach any significance.
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FIG. 2. The sequence of shot statics produced by Gauss-Seidel and conjugate
gradient iterations for a synthetic problem with 64 shots and 24 traces per shot.
The data were generated by adding random noise to a sinusoidal function with
a two cable length-wavelength. The final results differ primarily by constant
bias.
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In Figure 3a we show an iterative solution for the m component when an
end-on shooting geometry is used instead. This time the data were short period
with a wavelength of half a cable length. Despite the ready resolvability of the
short period solution, convergence was relatively slow and unstable near the ends
of the lines where low folds prevail. This is accentuated in the RNMO term
because in end-on shooting the midpoints gathers at one end of the line consist
only of near offset traces and at the other end only of far offsets. This
skewed offset-squared weighting of the RNMO explains the artifacts in the fig-
ure. By way of comparison, Figure 3b shows the m component when the same
set of tij is assigned to a split-spread geometry. In this case the offset distribu-
tions are equally balanced at both ends of the lines and the iterations are
better behaved. T ) '
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FIG. 3. a) The RNMO iterates for 64 shots and a 24 trace cable with end-on
shooting geometry. The convergence was slow and unsteady at the end of the
line. b) The same RNMO with split-spread geometry. The end points are
better behaved and the same accuracy of fit was reached with fewer iterations.
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Figures 3 actually raise two issues. The first is one of resolvability. As
Wiggins, et al. discussed, the statistical uncertainty in a component eigenvector
is inversely related to the corresponding eigenvalue of AT A which is fixed by
the geometry of the seismic survey. Components with high variance are poorly
resolvable despite any adjustments we make afterwards to our measurements.
The second issue is that of scaling or preconditioning. Tapering the coefficients
applied to first and last few model vector components is one form of precondi-
tioning.  Scaling each column to Euclidean norm 1 is a common preconditioning
step. So is adding a small positive amount to each diagonal entry of AT A .
All of these schemes are designed to aid in finding a reasonable solution for our
problem. The reliability of any given component in the final solution will not
be changed.

SINGULAR VALUE DECOMPOSITION OF A

To figure out why we saw no remarkable improvement in accuracy and
speed of convergence when we used conjugate gradients in our test cases above,
we computed singular value decompositions (SVD) for the matrices A and
ADYV2 We express the decomposition in the form

UTAV (8)

where A is a diagonal matrix containing the singular values, while U and V

contain, respectively, the right and left singular vectors.

Figure 4 shows the singular values of the matrix A for 64 shots with 24
traces per shot. In this case A has 1536 rows and 451 columns. It took
about 1000 CPU minutes to compute these using a canned program from the
eispack library. In agreement with Wiggins, et al., we find there are 13 zero
eigenvalues. At the other end of the spectrum we have 151 eigenvalues
bunched around the value 200 followed by a rapid drop-off.

The matrix V corresponding to Figure 4 is shown in Figure 5. It is quite
clear from this display that the large eigenvalues are associated with the residual
moveout terms. This i1s a scaling problem - the coefficients of these terms in
the matrix A are squared offsets for which we indeed used numbers on the
order of 200. The coefficients of all the other terms are ones and zeros. The
shot, receiver and structure components are significant only after the sharp
decrease in the singular value curve. This means that the RNMO terms are
the first to be determined in the iterative solution. This is not really what we
would like; we’d rather determine the shots and receivers delays quickly because
the structure and the RNMO terms may be refined in later post-stack processing
and interpretation.
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Singular Vectors components
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FIG. 4. Singular values for the residual statics matrix of the split-spread syn-
thetic used in in Figure 2. The matrix is rank deficient by 13 so there are 13
singular values equal to zero.
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FIG. 5. Singular model vectors for the singular values of Figure 4. It is quite
apparent that the large initial singular values are a result of the offset squared
weighting of the m components.
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The situation improves greatly when the diagonal, D, of AT A is used as
a preconditioner. Figures 6 and 8 show the singular values for A and AD-!/?2
for a smaller synthetic with 12 shots and 10 traces per shot. The diagonal
scaling improves the conditioning of the system - without scaling the singular
values are reduced by a factor of 10 across the first third of the spectrum;
with scaling we see only a factor of 4 across the first three quarters. This is
about as well conditioned as we could reasonably hope with a matrix that’s
guaranteed to have 13 (about ten percent) zero eigenvalues. Any sensible itera-
tive method (e.g. conjugate gradients and Gauss-Seidel) for solving this system
will converge quickly. We further note that the Gauss-Seidel method iteration is
independent of diagonal scaling in the following sense. Write

DATADT = DD 4 DD 4 HLTD
L, + D, + LY .
Then the Gauss-Seidel iteration matrix for the scaled system is
D, + L)LY = DWW + LY'DDLTD!
= D[ + LYyiLT D

showing it is similar to the iteration matrix for the unscaled problem and hence
has the same singular values.

If now we look at the corresponding V of the unscaled and scaled prob-
lems, shown in Figures 7 and 9, we see that the latter matrix is more balanced
but the shots and receivers terms in the first singular vectors are still smaller
than the structure and RNMO terms. This suggests we might still improve our
choice of preconditioner to mix in more of the shot and receiver components in
the early iterations. We’ll examine in future work how SSOR preconditioning

and various ad hoc smoothing constraints change the singular vectors.

SUMMARY

We now summarize what we have and haven’t done in this study. We
have described why it’s worth looking at, and a method for, applying conjugate
gradients to the residual statics equations. We’ve compared it with Gauss-Seidel
on a few synthetics and found similar convergence and no great speedup using
c-g. We’ve done SVD on one of the synthetics to discover that the residual
statics matrix is quite well conditioned with the exception of a very few small
singular values. This explains why conjugate gradients and Gauss-Seidel both
converged quite rapidly. So far we've see no pressing reason for our sponsors
to convert from Gauss-Seidel to c-g.

Now to what we haven’t done. First, as Gene Golub has noted, conjugate

gradients can be used to accelerate symmetric versions of Gauss-Seidel where one
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FIG. 6. Singular values for the coefficient matrix A with 12 shots and a 10
trace cable. The spectrum looks similar to that of the larger survey of Figure 4
but the scaling problems and sharp drop-off are not as severe.
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FIG. 7. Singular model vectors for the singular values of Figure 6. This
matrix has the same kind of features of the matrix in Figure 5 but they are
less pronounced.
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Singular Values
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FIG. 8. Singular values after the the coefficient matrix A as in Figure 6 is
preconditioned with the diagonal matrix D7V/2 The spectrum now looks
smoother and flatter, indicating the matrix is better conditioned.
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FIG. 9. Singular model vectors for the singular values of Figure 8. This
matrix is more balanced than that shown in Figure 7 but the shots and the

receivers components in the first singular vectors are still smaller than the struc-
ture and RNMO terms.
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sweeps forward on the first iteration and backward on the second (eg. g mr s
then s r m g). This acceleration we haven’t done and is more directly com-
parable with Gauss-Seidel as done in industry practice. Second we haven’t writ-
ten any program to process field data and verify our conclusions about conver-
gence and accuracy. This we consider an important step. Shuki Ronen found
that in his experience with writing such a program, the bulk of the computation
time is consumed in picking the tij’s. Improving the rate of convergence of the
solution of the resulting residual statics equations will in that case produce only
a small percentage overall savings. Lastly, we haven’t seriously looked at the
constraints routinely imposed in industry such as trend removal from the s and
r terms and smoothing of the m terms and what they mean in terms of the
residual statics matrix and its conditioning.
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