Using non-Gaussianity as an inversion constraint
William Harlan

CHOOSING A FUNCTIONAL

Minimum and maximum entropy methods succeed in simplifying the results of
numerous geophysical inversion problems because they either drive random variables
toward or away from Gaussianity. This property is not well recognized; as a result, the
usual functionals are not optimum. The varimax norm makes some particularly unfor-
tunate assumptions: it can only say whether a given probability density function (pdf)
resembles one generalized gaussian more than another. Shannon’s entropy does not take
account of histogram sampling rates. Least-squares functionals measure only the dis-
tance of an amplitude distribution from a Gaussian with fized amplitude and standard
deviation. The L1 norm similarly measures the distance of a distribution from an

exponential pdf with fixed decay.

Harlan, Claerbout, and Rocca (1984) derived a functional which measures the non-
Gaussianity of a pdf. The functional does not compare a specific Gaussian as in least-
squares, but rather measures the quality of fit of a pdf with the best fitting Gaussian.
This paper will add the ingredients required to use this functional in a non-linear optimi-
zation program. I refer readers to the cited paper to understand why one should

encourage or discourage non-Gaussianity in inverted parameters.

The development of this paper follows the assumptions that encourage non-
Gaussianity. Signal spaces should be chosen so as to be independent, identically distri-
buted (IID) processes. (For Gaussian variables, transformation should diagonalize and
balance the covariance matrix.) Thus, information may be contained in a minimum of
parameters, with a maximum of non-Gaussianity. The contrary case, with heavy linear
summing of random variables, produces Gaussianity. One may encourage Gaussianity in

an inversion with the following development, but only by ignoring the accompanying
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statistical dependence between samples. Such assumptions motivate Burg’s maximum
entropy spectral analysis, which attempts to maximize Gaussianity in the heavily mixed

Fourier transform domain.

First, I shall construct estimates of the functional in terms of values of the random
variables. Second, I shall derive the gradient for use in non-linear optimization. The
measure will then be in a form usable as a penalty or barrier function. Penalty func-
tions require scaling with respect to other terms in the functional to be optimized.
Appropriate scales can only be judged by the interpretability of the inverted result. If a
preore information allow, a penalty function could be given a fixed barrier value. If not,

then several barriers could be tried and the result judged on its interpretability.

CONSTRUCTION OF THE MEASURE

Let us define a histogram {¢; } of an array of random variables {z; } with dimen-

sion V.
1 Y -7
= 1y _ 1
where
F =Ly, A= o= Lty —7) (2)
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M is the number of histogram samples per standard deviation o. A is the distance
between amplitude samples. A is the characteristic function of the histogram. The sim-

plest choice yielding a usable derivative is the triangle function.

1| -l<a <<
A(z) = 0 elsewhere (3)

Harlan, Claerbout, and Rocca (1984) derived the following measure of non-Gaussianity

for a continuous pdf (p[x]).
Fip(a)} = [p(allogp(a) + glog[(v - [a'p(a")da"}p (2 )dz (1)

The simplest continuous estimate p (2 ) derived from ¢; is a step function:

pe) =28 nEE - ) (5)

We choose the boxcar as the characteristic function.

) = {1 —1/2<x <1/2

= 10 elsewhere (6)
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Now we can write the equivalent measure of non-Gaussianity for the histogram.

1

Fip(x); = Ygjlog—

q; + logo = Y q;logq; + logM
J

CALCULATION OF THE GRADIENT

To maximize or minimize the Gaussianity by conventional non-linear descent

methods, we must have the Frechet derivative of F' with respect to the random vari-

ables {z; }.
oF 3(Ij
= logg; +1
dz; ? dz (logg; + 1)
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Equation (10), with (11) and (12), becomes

9 [ %-T 1 1 1 - -
_9 — 8 — = _ S _

Equation (8) with (9), (13), and (14) becomes

oF 1 N Iy — &

; — . 1

CL1
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1 1 - =
1~ 5~ w2l - T - 7)l(logg; + 1))
or more simply,
oF 1 -
5 — i loga (@) - logg (a)
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+M§)[1 () - logq™ R

Nz 2losd (m) ~ logg (2 )z - 7)}

where
q*EquH(IA_TJr%—j) (17)
q’EquH(ng——;——J')

Let us define the histogram samples to the left and right of an amplitude z as

ilefi(z ) = ini( L

T) . iright(z ) = dleft(z ) + 1 (18)
int(x ) takes the integer part of z. Equivalently,
17(2) = Giright(z) 5 4 (2) = Citepz) (19)

During a single iteration, compute A and the histogram array {q; }, then measure
the non-Gaussianity from (7). To find the gradient with respect to one random variable
z;, find the histogram samples above and below its amplitude ( determined by equations
(18] and [19] ) and plug them into equation (16). Note that the logarithm need only be

calculated once for each sample.

CONVERGENCE

Unless the histogram {¢; } is coarsely sampled, the characteristic function Az ) will
be too narrow in the early iterations for decent convergence. The gradient will more
quickly adjust the overall shape of the function pdf if A(z ) is broadened in early itera-

tions and then narrowed. A unique minimum will not change; only the convergence rate.

REFERENCES

Harlan, W.S., Claerbout, J.F., and Rocca, F., 1984, Signal/noise separation and velocity
analysis: Geophysics, 49, 1869-1880.

SEP-42
176



