Robust inversion of non-linear transformations
with new notes on VSP’s

William S. Harlan

MODEL SIMPLICITY

Let us begin with a simple illustration of how poorly seismic data may determine a
geophysical model, even when redundancy is high. Figures 1, 2, 3, and 4 display two
impedance functions and corresponding synthetic vertical seismic profiles (VSP’s). Three
other one-dimensional functions were used for the modeling -- a source waveform, geo-
phone depths, and geophone amplification. See SEP-41, p. 283 for a fuller explanation of
the forward transform. Figure 5 plots the subtraction of Figure 4 from 2, at the same
scale. Differences in the modeled events are scarcely visible. The impedance functions,
though showing some correlation, vary considerably. The difference between the two
essentially belongs to the non-linear analog of a ‘“null space”: it does not greatly affect
the modeled section. Subjectively, Figure 3 is easier to interpret than 1. What makes

¢

one impedance function appear simpler? It has fewer “events’ -- in this case, fewer large

non-zero samples in the first derivative.

Define an event as a physical feature statistically independent of other features,
with a distinguishable expression in the data. A collection of events should easily model
features of comparable importance in the data, excluding noise. We want iterations that
converge on the most important events first since the reliability of later perturbations of

the model depends on the reliability of the earlier.

Numerically, we may see the difference in the non-Gaussianity of the two
impedance functions. Figures 6 and 7 show histograms corresponding to the first deriva-
tives of these two functions. Also plotted are the best fitting generalized Gaussians and
the best fitting Gaussians. See SEP 41, p.405 for the algorithm. Equation (5) shows the

form of a generalized Gaussian. The ‘“simpler” log of Figure 3 gives an exponential
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power («) of 0.663, and Figure 1 of 2.15. Figure 1, which happens to be a least-squares
inversion of a VSP, shows L2 or Gaussian statistics. Figure 3, from a more robust inver-
sion to be derived in this paper, shows very non-Gaussian statistics, with a high-number

of small values and sparse strong events.

THE MAP ESTIMATE

Let the data be a random process defined as a sum of noise and non-linearly
transformed signal. Define signal § so that samples can be regarded as events; samples

should be statistically independent.
d = f;(5) +m (1)
or d =f(F)+7n

We define § and 7 as focused, stationary random processes (random vectors).

We define geophysical noise as that untransformed component showing no spatial
coherence (we allow some temporal coherence). If a component possesses significant
coherence, then i1t should properly be defined after another transform, as a second

variety of signal.
Let p, (-) and p, (-) be the corresponding marginal probability functions (mpf’s).

An mpf is defined by the following. The probability that random variable y will have an
amplitude in the range y - Ay <y <y + Ay is

y=y+Aay
ply -2y <y <y+dyl= [ ple)d
y=y-By

z is a dummy variable.

The MAP inverse is the most probable § a given d. (MAP abbreviates mazimum a
posteriori, so called because one assumes knowledge of the final transformed result.) We

maximize the following conditional probability function

_ 5, (8i) pp ldi — [i(3)]
11(5)=P§|E(§|d):r_[p' pp;v(d.)

(2)

The denominator merely normalizes, does not affect a maximization. Since the logarithm

increases monotonically for positive functions, we may also maximize

Jo(5) = Z In Ps,(si) + Z Inp, [d; — fi(3)] + constants (3)

Specific forms of p, (-) and p,(-) may simplify the form of the above functional. For

example, if the signal and noise mpf’s are generalized Gaussians (with zero means),
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EXN EXN
L L
ps,(x)zc_le :pn,-(x):O_Qe ) (4)

then equation (3) yields a classic inversion functional with L? norms:
1 1 -
Js=—2= s |+ =3 |di - [i(s)| ™ (5)
1 3 :82 i

Note that a least-squares norm results in the Gaussian case, when « is 2.

For a given estimate 5 of the signal, the gradient of J, is

8J2 , o ps,l (sio) Z F.0 pn,’ [d] - fj (50)] (6)
9s; 700 ps,(sio) I P ld; — f;(30)]
9f ;(50)
where Fijp = (;T

This perturbation increases the probability of the model, but not necessarily the
reliability of events. If a non-zero event is only marginally more probable than a zero,
let us choose the zero and simplify the picture for the interpreter. One can estimate
ps (*) and p, (*) from similar logs by using the cross-entropy methods described in SEP-
41, p.405. One should not allow these distributions to depend on the data being

inverted, otherwise the result will be non-unique and possibly unstable.

A ROBUST ESTIMATE

Again, we want iterations which converge on the most important events first. The
most important are the most reliable. Let us measure the extent to which our perturba-
tions are influenced by noise and the extent to which signal components can be dis-

tinguished from noise.

To make the following calculations possible, let us assume that the p,, are Gaus-

sian. These distributions correspond to residual noise. We will iteratively extract the
non-Gaussian noise, as we did for the VSP, so this assumption will become increasingly
accurate. The important change is that the gradient in equation (6) is now a linear

function of the residual events.

1

J3=3In ps,»(si)+z);2‘[di - ;@) (7)
a7 ps." (5;°)
o 7= T oo - S 5 4 - 1560
SEP-42
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Define the following random variables as the residual signal, noise, and data:

s'l=f0GE)-fGEy); p'l=n-71y; d =5"+7n' (8)

Mg is previously extracted noise. Write the gradient d” as a single linear transform F

of the residual data d'.

&" =Y F; &' +¢ ; d"=Fd' ; 5" =Fs' ; n" =Fn' (9)
i

Each prime designates a transformation of a component away from the definition of
equation (1).

Now let us estimate how much of a given sample of the gradient is only
transformed signal. Let us postpone the estimation of the signal and noise mpf’s. The

Bayesian estimate of the signal, s” | in a sample of the linearly transformed data, d” | is

§1 = E(s" | d") (10)

_ f:): psr () ppn(d”" -2 ) dz
par(d")

:fz‘ Pgnt |dlr(.’lf |d”)d$

We suppress sample subscripts.

Though we may say that we now have the most probable values of the signal in our
perturbations, we have not yet determined how probable these are. Define the reliability
of a given estimate § as the probability that the actual value is no more than a fraction

¢ of d away. Accept a given perturbation § if

1-e <plecd” <s" —§" <cd" | d"] (11)

cd
fps” ('§ " -z )pn" (.’II )dl‘
—cd

o0
fp.?" (§ "o x)pnn (fl})dz
—00

where both ¢ and e are small numbers.

SOME ADDITIONAL STABILITY

Some components of the MAP perturbation may be unreliable because the forward
transform f largely destroys them. Another statistical simplification will allow us to

suppress these sources of instability.
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As we saw, the robust estimate requires only that the noise distribution be Gaus-
sian. The signal distribution could remain arbitrary. Let us instead assume that resi-
dual signal is also Gaussian, and let us also temporarily replace the forward transform f

by a linearization about §y. The functional changes accordingly.

Ji(Eo+AF) = [i(50) + X F;)As; (12)
2
1 1
Ji=Y —5 (5" + 8+ 3 — [d'; -3 FifAs;]?
i 20’8' i 20',,‘ i

Let d — f (5,) be the residual data, d'. Now repeated applications of the gradient (6)
will remain a linear function of the noise. The cumulative perturbation d" would solve
a least-squares inversion for the signal. Because of the linearity the robust estimation

could still be applied.

This step becomes essential when unstable components completely obscure reliable
events in the perturbations. This step will suppress poorly determined high frequencies

that often plague the inversion of impedance functions.

ESTIMATING THE A PRIORI STATISTICS

We have already decided to make the a priori distributions Gaussian for the MAP
estimate of equation (2). The standard deviation for the noise could be chosen pessimist-
ically as equal to that of the data. The standard deviation for the signal is important
for stability in the MAP perturbation. Let us first choose some physical upper bound,

and if the result is unstable, let us reduce it.

Much more critical are the choices for the distributions used in the robust estimate
of equations (10) and (11). We prefer to estimate these mpf’s directly from the data by

observing histograms of the residual data before and after linear transformation.

Stationarity

Let us first assume that the signal has a stationary dimension, so that enough
redundancy exists for histograms to approximate mpf’s. A priori statistics should reflect
regional possibilities. Knowledge of one reliable event should increase the likelihood of
finding such another event nearby. Thus, one not only expects but desires that
estimated mpf’s change slowly over spatial dimensions and time. Because of this sta-
tionarity, a histogram prepared from a great many samples with identical mpf’s will

describe the possibilities open to them all.
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Likewise we can usually find some dimension over which we expect noise events to
be equally likely and essentially similar. When we later drop subscripts from signal and

noise distributions, we are assuming stationarity over some dimension.

Pessimistic estimates of distributions

We shall need the following relations between random variables, the z’s and y’s,

and their corresponding mpf’s. @ is a constant, and 2 a dummy variable.
Z =Y +a_’pz(x):py(x_a); (13)
1
d=ay —p(z)=—p(s/a);

4 :yl—{—yQ—»pz(x):pyl(-’E) * pr(x)

The star indicates convolution. Because we assumed 7 to be focused (samples statisti-

cally independent), equation (9) requires that

1 T -6

pn,"(x):H* [F pn’( I )] (14)

The ] # indicates multiple convolutions. In many applications, including that of the
VSP, the ¢;’s will change slowly enough to preserve local stationarity. We will then be

able to suppress subscripts on mpf’s.

Define an exaggerated estimate of P, (z ) by assuming all residual data are noise,

equivalently by ignoring the coherence of any signal.

o () =TI+ [Fpar ()] = o (@) * T1 # [—per (S )]

(15)

This mpf must overestimate the transformed noise and all positive moments. If the data
contain no signal, then the estimate is perfect (the signal mpf becomes a delta function).
Estimate (15) easily by generating a random, focused array with the same mpf’s as the
data, transforming with the same linear transformation, and taking local histograms.
Because the signal and noise remain statistically independent and additive after transfor-

mation, choices of their mpf’s determine that for the data:
pan(z) = psr(x) * pyn () (16)
With the assumption of local stationarity, estimate py» (z ) from local histograms of the

transformed data. The divergence of the estimate from the a priori mpf in equation (16)

should be minimal. Measure this divergence with the directed divergence (cross entropy)

of Kullback. Minimizing fp 1(z )Infp (2 )/p o(z )]dz minimizes the “unpredictability’” of
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p (2 ) assuming po(z ) to be the most predictable. Iteratively discover the best estimate

of pyn (), given pgv (z) and p,» (2 ), by minimizing the following (suppressing primes)
= [pa(2)nlpg(2)/ 9, (z -y )pa (v)dy |dz (17)
A
+—%MAMW—H“”fﬂmW%ImWHFW

Add two Lagrange multipliers for the constraints of unit area and of positivity. To cal-
culate the gradient of J; with respect to each point of the function p; (z ), perturb a pre-

vious estimate with a delta function: p, (z ) + €6(z — z ) and differentiate.

2 Jslp (x) + etz - 2] (19)

f pd(x)

[ s (y)pa(z—y)dy

fps —1 +>‘[ps(x0) |ps(x0)H

Iteratively perturb p,(z) with the negative of this gradient; an inexpensive line search

pn(z —z0)ds

finds the correct magnitude. The constraints easily determine the proper values of X
and X\, for any magnitude of perturbation. The second term equally raises or lowers all
points of p, (z) until the constraint of unit area is satisfied. The third term moves each
point a sufficient positive distance to remove any negative excursions. The first term
divides the estimate p;(z) by the a priori value and cross correlates with a shifted noise
distribution, contributed by the perturbation of p, (z9). The cross correlation thus

identifies where the divergence is not uniform and compensates with appropriate pertur-

bations.

EXTRACTING NON-GAUSSIAN NOISE FROM VSP’S

Figure 8 contains a portion of a VSP provided by L’Institut Frangais du Petrole.
This section contains considerable Gaussian noise. A strong tube wave however acts as
strong additive non-Gaussian noise that, because it violates the assumptions of equation
(7), must distort the corresponding perturbations of the model. To circumvent this

problem let us iteratively extract the most reliable signal and noise from the data.

I use the differential system of SEP-41, p.283 as a physical model to find an inver-
sion for the most reliable signal, whose synthetic data appear in Figure 9. Subtracting
Figure 9 from 8 leaves residuals containing noise and the least reliable signal (Figure 10).
To find a pessimistic estimate of the mpf of the remaining signal, I find the synthetic

VSP a least-squares inversion of the residuals and take a histogram. I then extract the
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samples of these residuals containing greater than 96% noise with greater than 50% pro-
bability (Figure 11). Figure 12 shows the remaining Gaussian noise (Figure 10 minus

11). Subtracting the most reliable noise from the original data (Figure 13) will insure

that remaining noise is much more Gaussian.
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