An iterative solution to seismic tomography

Kamal Al-Yahya

ABSTRACT

The tomographic problem is posed as an inverse problem. The iterative method, which
is practical for geophysical tomography, is investigated and the advantages and limitations
of this method are displayed through simulated examples of cross-hole and surface-to-hole

geometries. The generalized inverse approach is investigated in another paper (Al-Yahya,
this SEP report).

INTRODUCTION

Viewed in a general way, tomography is an inverse problem: given certain observations
from outside a medium, we want to determine some properties of that medium. The
observations used in tomography are line integrals of some function of the medium. For
geophysical tomography, this function can be the attenuation factor, the slowness (the
reciprocal of velocity) of sound (Bois et al., 1972; Dines and Lytle, 1979), or electrical
properties (Daily et al., 1982). The known solutions to this problem are generally based
on ray optics, in which these line integrals represent rays that travel through the medium.
It is well known that ray optics is valid only under some restrictions. The main restriction is
that the wave length of the travelling energy must be much smaller than any characteristic
quantity of length dimension of the medium, like the transmitter-receiver separation and
the size of anomalous bodies (Cerveny et al., 1977).

Furthermore, most of the methods that are based on ray theory assume that the line
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integrals (the rays) are straight. This assumption is valid only if the variation in the
medium is not large enough to cause appreciable bending of the rays. It is advisable to,
whenever possible, use methods that lift this restriction.

Devaney (1982) discusses a wave-equation method of solving the tomographic problem.
Because this method is based on the wave equation (actually, an approximation to the wave
equation), it is naturally expected to perform better than do the optical methods when
the assumptions of ray optics, mentioned above, fail.

The purpose of this study is to look into the details of the problem in order to find
the best reconstruction method. In fact, I will discuss techniques that can be classi-
fied as restoration rather than reconstruction. The difference between reconstruction and
restoration is that reconstruction combines the information of the line integrals in order to
reconstruct the image, while restoration attempts to compensate for the smearing of those
line integrals (Bracewell, 1984).

In all of the following discussion, ray optics is assumed. However, curved, instead of
straight, ray paths will be used to lift the restriction of weak velocity contrast. I have
not chosen to use wave-equation methods because the current sampling and apertures
used in borehole recordings are not suitable for wave-equation methods. This subject will,
hopefully, be discussed in a later study. I also have the goal of incorporating anisotropy in

the reconstruction algorithm in a later study.

the tomographic problem

For a two-dimensional medium, the tomographic problem can be stated as follows:

Determine the function f(z,y) given a set of its projections, or line integrals

p(r,0) = [ £(z,)ds

for a range of projection angles § = tan~!(s/r), where z, y, r, s, and @ are as shown in

Figure 1. The integration is performed from the transmitter to the receiver.

Fourier methods

Fourier methods are based on the projection-slice theorem, originally formulated by
Bracewell (1956), which states that the one-dimensional Fourier transform of the projection
taken at an angle @ is equal to a slice at the same angle 8 of the two-dimensional Fourier
transform of the image.

A well known Fourier method is the filtered back-projection method (Deans, 1983).
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FIG.1. The geometry of tomography: the r-s axes are rotated around the z-z axes by
an angle 4.

When this method is used, the function f(z,y) is reconstructed by

Faw) = gz [ [ klplk,0)e ks (1)

where |k| is a rho filter and p(k,0) is the Fourier transform of the projections p(r) taken at
an angle 8. The correspondence between convolution in one domain and multiplication in
the transform domain can be used to change the multiplication of the rho filter by p(k,8) in
equation (1) into convolution and the method is thusly known as the convolution method.

It is worth mentioning that the wave-equation methods of tomography, mentioned
earlier, use a theorem similar to the projection-slice theorem: the diffraction-projection

theorem in which semi-circles, instead of slices, of the Fourier transform of the image are
assembled (Pan and Kak, 1983).

GEOPHYSICAL TOMOGRAPHY

Various recording geometries are used in geophysical prospecting. Using any of these
geometries provides data that can be used in the tomographic inversion. A typical example

is cross-hole geometry, in which transmitters are placed in a well and receivers are placed
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FIG. 2. The limited coverage of the surface-to-hole recording geometry (Figure 3b). Note
that the coverage of the r-axis is not uniform.

in another well some distance apart from the first (Figure 3a). Unlike medical tomogra-
phy, geophysical tomography is often severly limited in coverage, as shown in Figure 2.
Furthermore, the integration paths are not straight, so the Fourier method of equation (1)
is not applicable. In this paper, the objective is the determination of the velocity of the
medium. The projections are therefore the travel times between transmitters and receivers
(the first break). If we have n transmitter-receiver pairs, then the travel time for the j-th
pair is

tj:/l-( )wdlj(w), ij=12,...,n (2)

where w = w(z,y) is the slowness of the medium. If the medium is subdivided into
rectangular cells, the slowness in each cell being constant, then equation (2) can be written

as

tj :Zwili _]'2 1,2,...,n (3&)
i

or in matrix form,

t =Lw (3b)

It is very important to note that equations (2) and (3) are nonlinear because dl; is
strongly dependent on the model w. In our treatment of the tomographic problem, we will
need to linearize these equations by replacing dl;(w) by dl;(wo), where wy is an initial
guess or an updated smooth version of w.

In equation (3), the summation is along the cells crossed by the ray. To determine

these cells we trace the ray through the medium. It should be noted that the ray tracing
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FIG. 3. a) Cross-hole geometry. b) Surface-to-hole geometry.
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itself does not have to consider the medium as subdivided into cells. Known ray-tracing
schemes in which the ray paths are smooth curves can be used.

There are several theoretical solutions to the linear form of equation (3). The linear-
ity assumption imposes an iterative solution. This paper discusses one iterative solution
known as the algebraic reconstruction technique (ART). I also studied the singular value
decomposition of the problem. Such decomposition is the basis for the generalized inversed
solution. To keep the size of this paper reasonable, the generalized inverse is treated sep-

arately in another paper (Al-Yahya, this SEP report).

THE ART METHOD

The algebraic reconstruction technique seems to be the most practical way to solve

the problem, because it has the following advantages:
1. It can be used for any recording geometry.
2. Tt does not require the assumption of straight ray-paths.
3. It does not require large amount of computer memory because only
a small number of parameters enter the calculation at any stage.

From equation (3a), the travel time for a given transmitter-receiver pair is
Z wil; =t.
1

At a given iteration, we assign the cell ¢ a slownesses w;. For this particular slowness, we

Zu‘),'lizf.
T

Subtracting the first from the second of the above two equations yields,

will have a travel time £, so

Z Awl; = At (4)

where At =t —f and Aw; = w; — ;. In order to update our model, we need to determine
Aw;’s in equation (4). However, this equation is an under-determined system where we
have one equation with many unknowns. To obtain a unique solution for this equation,
we regard it as a constraint to a minimization problem in which we minimize some norm.

A reasonable norm to use is the Euclidean norm (the L? norm),

=) (Aw)?

1
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The solution of equation (4) subject to this constraint is easily found by use of the Lagrange
multipliers method. Instead of minimizing the norm > Aw?, we minimize a combination

of the norm and the constraint, that is we minimize

K= Z(Aw? — )\Awil,’) R

where the Lagrange multiplier, A, is to be determined. When the derivative of K with

respect to Aw; is equated with zero (thus minimizing K ), we obtain

A
Aw; = =l; 5
w2 )

To determine the Lagrange multiplier A, we substitute for Aw; in equation (4) to get

2At

and therefore, from equation (5),

l;
Aw; = AR At (6)
11

Dines and Lytle (1979) point out that any even norm, L??P, can be used. In this case,

equation (6) becomes

which is equivalent to equation (12) in their paper (with “typo” corrected!). They also
point out that the minimax norm with p — oo can be used. In this case equation (7a)

becomes
At

2k
which is the well known ART algorithm (Gordon 1974).

Equations (7) give the solution of one iteration for one ray; this solution can be used

Aw,- =

(76)

to update those portions of the model passed by the ray. In equation (7a), the error
between the actual travel time and the travel time of the guessed function is distributed
among the cells so that each cell is given a weight [;, the length of the ray segment in that
cell. In equation (7b), all cells are given the same correction, regardless of the length of
the segment. Projecting the error along the ray path is termed an steration in the litera-

ture. Dines and Lytle (1979) suggest that the correction be delayed until all rays have been
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FIG. 4. Histograms for few cells in the model of Figure 6. The row and column number of
the cell is shown at the top of each histogram. The dashed line is the median, the broken
line is the mean. In the top two cells the mode is better than the mean and the median.
In cell 21,1 the mode is the worst and in cell 31,11 all three are close to each other.

processed; the slowness of each cell is then updated by adding to the slowness the mean
of the corrections of the passing rays for each cell. This method has the advantage of

uncoupling the rays: the error of one ray does not immediately affect other rays.

The iterative method attempts to fit the model to the recorded data, so the misfit
between the recorded data and the data corresponding to the reconstructed model should

decrease through the iterations. A quantity that reasonably measures this misfit is the
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FIG. 5. Histograms for few cells in the model of Figure 16. The row and column number
of the cell is shown at the top of each histogram. The dashed line is the median, the
broken line is the mean. In the top two cells, the mode and the median are the same. In
the bottom two the mode is the best estimate.

square error, E, defined by

E=) (t: —f)? (8)

where t; is the recorded time and £; is the time corresponding to the reconstructed model
for the ¢-th transmitter-receiver pair. We continue to update our model via equations (7)

until the square error, E, becomes very small (compared to a predetermined criterion).
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Constraining the solution

Various constraints can be applied to the solution. More weight can be given to rays at
a particular angle if the medium has the least variation in that direction. We can also put
upper and/or lower limits to the velocity if such limits are known or even fix the velocity
at some cells if those velocities have been previously determined. Finally, we can limit the
derivatives of the velocity function of the reconstructed image. Of the various constraints

I used only the last one which was found to improve the results.

Convergence of the iterative method

It is important to know if the iterative method will converge, and if it does, to what
solution. Minimizing the Euclidean norm produces a “unique” answer for an underdeter-
mined system. The iterative method gives a similar minimization: for the unconstrained

problem the solution is that which minimizes

where w is the average slowness of the model (Herman et al., 1973). This is a minimum-

variance solution: we will obtain the smoothest of all possible solutions.

velocity

depth 1180

FIG. 6. A layered-earth model. The velocity increase with depth from 1000 m/sec to 1300
m/sec.
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velocity

FIG. 7. The reconstructed model of Figure 6 using the mean of suggested values to correct
a single cell.

REFINING THE RECONSTRUCTION

Let’s closely examine the updating procedure which has two stages. In the first stage,
a correction for all cells along the ray path is computed from equation (7a) or (7b). The
second stage is done after all rays have been traced. The second stage is a decision-making
process in which we use all passing rays to update the slowness of each cell. We can
think of each ray as giving a suggestion on how to update the slowness of the cell. If one
of these rays has passed through a small anomalous body, like that shown in Figure 16
(which will be discussed later), the first stage will suggest that all cells in the path of this
ray be updated according to the observed error At. An erroneous suggestion can thus
be given to those cells. If we use the mean in the second stage, even only one or two
erroneous suggestions will affect the updating procedure of the cell. Taking the mean of
a number of samples is basically a least-squares operation, which is severely affected by
erratic samples. This problem can be solved if the median of the data is taken instead of
the mean (Cleerbout and Muir 1973).

Let’s look at few cells in one iteration and see what suggestions we get for two par-
ticular examples. Figure 4 shows histograms of the suggestions made for some cells from
the model shown in Figure 6. In this model, the mean and median are close to each other
and we expect the difference between the reconstructed images to be small. We notice
that each of them is different from the maximum-likelyhood value (the mode). Because

I created the model and know the desired corrections, I can see that the mode gives a
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FIG. 8. A reconstructed model of Figure 6. The median of suggested values was used to
correct each cell.
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FIG. 9. A reconstructed model of Figure 6. The mode of suggested values was used to
correct each cell.

correction better than that produced by either the mean or the median. Figure 5 shows
histograms for the suggestions made for some cells from the model shown in Figure 16
(discussed later). Again, knowing the desired corrections, we can conclude from the his-
tograms that the median produces better results than those produced by the mean. It is
also clear that the mode in general produces better results than produced by the median or

the mean. However, it is not clear that the mode will give the best answer for all models.
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FIG. 10. Profiles taken at x=300 m from Figure 7 (top) and Figure 9 (bottom) for 12
iterations.

Because we have seen the histograms for only one iteration, it is not even clear that, for
these two examples, the mode will continue to provide better results than those produced

by the mean and the median throughout all iterations.

SOME EXAMPLES

I will now show some results produced with these three estimates: the mean, the
median, and the mode using the ART method. In the first example, I attempt to recon-

struct the data for the layered earth model of Figure 6. The velocity increases from 1000
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FIG. 11. The reconstructed velocity as a function of offset for the layered-earth model of
Figure 6; solid=mean, dashed=median, dotted=mode. The velocity should be a constant
function of offset (v=1000 m/sec).

to 1300 m/sec in 100 m/sec steps. The results of reconstruction are shown in Figures 7 to
11 for the cross-hole example. The wells were 1180 m deep and 600 m apart. The region
between the two wells was divided into 59 rows, dz=20 m, and 20 columns, dx=30 m.
30 transmitters and 30 receivers were used with both transmitter’s and receiver’s interval
being 40 m. We see that Figures 7 and 8, in which the mean or median was used, show a
lateral variation in velocity at the top and bottom parts of the reconstructed image. This
“artificial” lateral variation is undesired because it will affect our study of the anisotropy
of the medium, a property I would like to include in the tomographic inversion at a later
stage. The situation in Figure 9 in which the mode was used is different: the velocity of the
reconstructed model has negligible lateral variation. This difference is shown in Figure 11
for the cells at 2=200 m. It is clear that, for that depth in this particular model, the result
of using the mode is superior to those of the mean and the median.

The square error of equation (8) for the layered-earth model is shown in Figure 12,
which shows that the mode gives the fastest decay of the error (However, the error rising
slightly at the last few iterations indicates that I could have stopped much earlier).

I now try to reconstruct the image of a surface-to-hole recording geometry for the
same model (Figure 3b). The well was 390 m deep in which there were 20 receivers placed

at 20 m intervals. On the surface, there were 20 transmitters at 10 m intervals. The cells
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FIG. 12. Square error (arbitrary scale) as a function of iteration number. X = mean, - =
median, * = mode.

were 10 m deep and 10 m wide. The results of the reconstruction are shown in Figures 13
to 15. We see that only the velocity in the area through which the ray passed is corrected;
the algorithm is blind in the other region. This blindness is directly related to the number
of cells in a layer. If there is only one cell per layer, then an observation in any offset in a
layer will be directly extended to all offsets in that layer.

Comparing the profiles of Figure 15, we see that this geometry requires more iterations
for the algorithm to converge than the cross-hole geometry requires. The reason for this
difference is that the shallow parts in the surface-to-hole geometry project their low velocity
to the deeper parts, which stay under-corrected for the first few iterations. We also see
that using the mode gives a slightly better result than that of the mean; the result of the
mode also converges faster.

The second example demonstrates the effect of having a compact anomalous body in
the middle of the medium. Figure 16 shows a model having a constant velocity of 1000
m/sec everywhere except for a small region in the middle, which has a velocity of 1200
m/sec. The wells were 580 m deep and 600 m apart. The region between the two wells
was divided into 58 rows, dz=20 m, and 40 columns, dx=15 m. 30 transmitters and 30

receivers were used with both transmitter and receiver interval being 20 m. The anomalous

SEP-42

143



velocity

Al-Yahya iterative solution of seismic tomography

depth 600

FIG. 13. the reconstructed model of Figure 6 using the mean and surface-to-hole geometry.

body is in the center of the region between the two wells. It is 4 cells wide and 6 cells
deep. The reconstructed images made with the three methods discussed above, are shown
in Figures 17 to 19. For this example, the median gives the best result; the others give a
dispersed anomaly. This dispersion is expected when the mean is used because there is a
degree of non-uniqueness, as mentioned above. The median gives a more compact image
in this example because those few erratic suggestions are discarded.

It is interesting to note that the mode gives the most compact result for the first
iteration, as shown in Figure 20. However, the result changes toward that of the mean as
the iterations proceed, while that of the median stays compact. This is probably because
the distribution of the suggestions changes toward a gaussian, something expected from

the central-limit theorem.

CONCLUSIONS

Because algebraic reconstruction technique methods do not require a large amount of
computer memory and can be used for general recording geometry, they are suitable for
geophysical tomography.

We saw that looking at the distribution (making histograms) of the suggested correc-
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0 depth 600

FIG. 14. the reconstructed model of Figure 6 using the mode and surface-to-hole geometry.

tion is useful. For some models, using the highest value in these histograms gives a better
result than those produced by other methods. For models having compact anomalous

bodies the median proved to be a superior tool.
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FIG. 16. A model having a high velocity anomaly in the middle of a constant velocity
medium.

velocity

FIG. 17. The model of Figure 16 reconstructed with the mean of suggested values used
to correct a single cell.
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velocity
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FIG. 18. The model of Figure 16 reconstructed with the median of suggested values used
to correct a single cell.

velocity

FIG. 19. The model of Figure 16 reconstructed with the mode of suggested values used
to correct a single cell.
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FIG. 20. The result of the first iteration using the mode for the model in Figure 16. Note
the compactness of the anomaly compared to Figures 18 and 19.
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